skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1955997

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Motivated by robust and quantile regression problems, we investigate the stochastic gradient descent (SGD) algorithm for minimizing an objective functionfthat is locally strongly convex with a sub--quadratic tail. This setting covers many widely used online statistical methods. We introduce a novel piecewise Lyapunov function that enables us to handle functionsfwith only first-order differentiability, which includes a wide range of popular loss functions such as Huber loss. Leveraging our proposed Lyapunov function, we derive finite-time moment bounds under general diminishing stepsizes, as well as constant stepsizes. We further establish the weak convergence, central limit theorem and bias characterization under constant stepsize, providing the first geometrical convergence result for sub--quadratic SGD. Our results have wide applications, especially in online statistical methods. In particular, we discuss two applications of our results. 1) Online robust regression: We consider a corrupted linear model with sub--exponential covariates and heavy--tailed noise. Our analysis provides convergence rates comparable to those for corrupted models with Gaussian covariates and noise. 2) Online quantile regression: Importantly, our results relax the common assumption in prior work that the conditional density is continuous and provide a more fine-grained analysis for the moment bounds. 
    more » « less
    Free, publicly-accessible full text available June 16, 2026
  2. Free, publicly-accessible full text available May 3, 2026
  3. Free, publicly-accessible full text available May 3, 2026
  4. The convergence behavior of Stochastic Gradient Descent (SGD) crucially depends on the stepsize configuration. When using a constant stepsize, the SGD iterates form a Markov chain, enjoying fast convergence during the initial transient phase. However, when reaching stationarity, the iterates oscillate around the optimum without making further progress. In this paper, we study the convergence diagnostics for SGD with constant stepsize, aiming to develop an effective dynamic stepsize scheme. We propose a novel coupling-based convergence diagnostic procedure, which monitors the distance of two coupled SGD iterates for stationarity detection. Our diagnostic statistic is simple and is shown to track the transition from transience stationarity theoretically. We conduct extensive numerical experiments and compare our method against various existing approaches. Our proposed coupling-based stepsize scheme is observed to achieve superior performance across a diverse set of convex and non-convex problems. Moreover, our results demonstrate the robustness of our approach to a wide range of hyperparameters. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  5. Dynamic max-min fair allocation (DMMF) is a simple and popular mechanism for the repeated allocation of a shared resource among competing agents: in each round, each agent can choose to request or not for the resource, which is then allocated to the requesting agent with the least number of allocations received till then. Recent work has shown that under DMMF, a simple threshold-based request policy enjoys surprisingly strong robustness properties, wherein each agent can realize a significant fraction of her optimal utility irrespective of how other agents' behave. While this goes some way in mitigating the possibility of a 'tragedy of the commons' outcome, the robust policies require that an agent defend against arbitrary (possibly adversarial) behavior by other agents. This however may be far from optimal compared to real world settings, where other agents are selfish optimizers rather than adversaries. Therefore, robust guarantees give no insight on how agents behave in an equilibrium, and whether outcomes are improved under one. Our work aims to bridge this gap by studying the existence and properties of equilibria under DMMF. To this end, we first show that despite the strong robustness guarantees of the threshold based strategies,no Nash equilibrium existswhen agents participate in DMMF, each using some fixed threshold-based policy. On the positive side, however, we show that for the symmetric case, a simple data-driven request policy guarantees that no agent benefits from deviating to a different fixed threshold policy. In our proposed policy agents aim to match the historical allocation rate with a vanishing drift towards the rate optimizing overall welfare for all users. Furthermore, the resulting equilibrium outcome can be significantly better compared to what follows from the robustness guarantees. Our results are built on a complete characterization of the steady-state distribution under DMMF, as well as new techniques for analyzing strategic agent outcomes under dynamic allocation mechanisms; we hope these may prove of independent interest in related problems. 
    more » « less
    Free, publicly-accessible full text available March 6, 2026
  6. Meka, Raghu (Ed.)
    Matrix completion tackles the task of predicting missing values in a low-rank matrix based on a sparse set of observed entries. It is often assumed that the observation pattern is generated uniformly at random or has a very specific structure tuned to a given algorithm. There is still a gap in our understanding when it comes to arbitrary sampling patterns. Given an arbitrary sampling pattern, we introduce a matrix completion algorithm based on network flows in the bipartite graph induced by the observation pattern. For additive matrices, we show that the electrical flow is optimal, and we establish error upper bounds customized to each entry as a function of the observation set, along with matching minimax lower bounds. Our results show that the minimax squared error for recovery of a particular entry in the matrix is proportional to the effective resistance of the corresponding edge in the graph. Furthermore, we show that the electrical flow estimator is equivalent to the least squares estimator. We apply our estimator to the two-way fixed effects model and show that it enables us to accurately infer individual causal effects and the unit-specific and time-specific confounders. For rank-1 matrices, we use edge-disjoint paths to form an estimator that achieves minimax optimal estimation when the sampling is sufficiently dense. Our discovery introduces a new family of estimators parametrized by network flows, which provide a fine-grained and intuitive understanding of the impact of the given sampling pattern on the difficulty of estimation at an entry-specific level. This graph-based approach allows us to quantify the inherent complexity of matrix completion for individual entries, rather than relying solely on global measures of performance. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  7. Free, publicly-accessible full text available December 10, 2025
  8. In this work, we investigate stochastic approximation (SA) with Markovian data and nonlinear updates under constant stepsize. Existing work has primarily focused on either i.i.d. data or linear update rules. We take a new perspective and carefully examine the simultaneous presence of Markovian dependency of data and nonlinear update rules, delineating how the interplay between these two structures leads to complications that are not captured by prior techniques. By leveraging the smoothness and recurrence properties of the SA updates, we develop a fine-grained analysis of the correlation between the SA iterates and Markovian data. This enables us to overcome the obstacles in existing analysis and establish for the first time the weak convergence of the joint process. Furthermore, we present a precise characterization of the asymptotic bias of the SA iterates. As a by-product of our analysis, we derive finite-time bounds on higher moment and present non-asymptotic geometric convergence rates for the iterates, along with a Central Limit Theorem. 
    more » « less
  9. Stochastic Approximation (SA) is a widely used algorithmic approach in various fields, including optimization and reinforcement learning (RL). Among RL algorithms, Q-learning is particularly popular due to its empirical success. In this paper, we study asynchronous Q-learning with constant stepsize, which is commonly used in practice for its fast convergence. By connecting the constant stepsize Q-learning to a time-homogeneous Markov chain, we show the distributional convergence of the iterates in Wasserstein distance and establish its exponential convergence rate. We also establish a Central Limit Theory for Q-learning iterates, demonstrating the asymptotic normality of the averaged iterates. Moreover, we provide an explicit expansion of the asymptotic bias of the averaged iterate in stepsize. Specifically, the bias is proportional to the stepsize up to higher-order terms and we provide an explicit expression for the linear coefficient. This precise characterization of the bias allows the application of Richardson-Romberg (RR) extrapolation technique to construct a new estimate that is provably closer to the optimal Q function. Numerical results corroborate our theoretical finding on the improvement of the RR extrapolation method. 
    more » « less
  10. We study security threats to Markov games due to information asymmetry and misinformation. We consider an attacker player who can spread misinformation about its reward function to influence the robust victim player's behavior. Given a fixed fake reward function, we derive the victim's policy under worst-case rationality and present polynomial-time algorithms to compute the attacker's optimal worst-case policy based on linear programming and backward induction. Then, we provide an efficient inception (""planting an idea in someone's mind"") attack algorithm to find the optimal fake reward function within a restricted set of reward functions with dominant strategies. Importantly, our methods exploit the universal assumption of rationality to compute attacks efficiently. Thus, our work exposes a security vulnerability arising from standard game assumptions under misinformation. 
    more » « less