skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1956149

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explore data management for longitudinal study survey instruments: (i) Survey instrument evolution presents a unique data integration challenge; and (ii) Longitudinal study data frequently requires repeated, task-specific integration efforts. We present DDM (Drag, Drop, Merge), a user interface for documenting relationships among attributes of source schemas into a form that can streamline subsequent efforts to generate task-specific datasets. DDM employs a "human-in-the-loop" approach, allowing users to validate and refine semantic mappings. Through a simulation of user interactions with DDM, we demonstrate its viability as a way to reduce cognitive overhead for longitudinal study data curators. 
    more » « less
  2. Sudeepa Roy and Jun Yang (Ed.)
    Data scientists use a wide variety of systems with a wide variety of user interfaces such as spreadsheets and notebooks for their data exploration, discovery, preprocessing, and analysis tasks. While this wide selection of tools offers data scientists the freedom to pick the right tool for each task, each of these tools has limitations (e.g., the lack of reproducibility of notebooks), data needs to be translated between tool-specific formats, and common functionality such as versioning, provenance, and dealing with data errors often has to be implemented for each system. We argue that rather than alternating between task-specific tools, a superior approach is to build multiple user-interfaces on top of a single incremental workflow / dataflow platform with built-in support for versioning, provenance, error & tracking, and data cleaning. We discuss Vizier, a notebook system that implements this approach, introduce the challenges that arose in building such a system, and highlight how our work on Vizier lead to novel research in uncertain data management and incremental execution of workflows. 
    more » « less
  3. null (Ed.)
    Incomplete and probabilistic database techniques are principled methods for coping with uncertainty in data. unfortunately, the class of queries that can be answered efficiently over such databases is severely limited, even when advanced approximation techniques are employed. We introduce attribute-annotated uncertain databases (AU-DBs), an uncertain data model that annotates tuples and attribute values with bounds to compactly approximate an incomplete database. AU-DBs are closed under relational algebra with aggregation using an efficient evaluation semantics. Using optimizations that trade accuracy for performance, our approach scales to complex queries and large datasets, and produces accurate results. 
    more » « less