skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1956154

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. (−)-Cylindrocyclophane A is a 22-membered C2-symmetric [7.7]paracyclophane that bears bis-resorcinol functionality and six stereocenters. We report a synthetic strategy for (−)-cylindrocyclophane A that uses 10 C−H functionalization reactions, resulting in a streamlined route with high enantioselectivity and efficiency (17 steps). The use of chiral dirhodium tetracarboxylate catalysis enabled the C–H functionalization of primary and secondary positions, which was complemented by palladium-catalyzed C(sp2)–C(sp2) cross-couplings, resulting in the rapid formation of the macrocyclic core and all stereocenters with high regio-, diastereo-, and enantioselectivity. The use of a late-stage palladium-catalyzed fourfold C(sp2)–H acetoxylation installed the bis-resorcinol moieties. This research exemplifies how multilaboratory collaborations can produce substantial modernizations of complex total synthesis endeavors. 
    more » « less
    Free, publicly-accessible full text available November 8, 2025
  2. Free, publicly-accessible full text available May 22, 2025