skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1956403

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper describes the use of a highly crystalline conductive 2D copper3(hexaiminobenzene)2(Cu3(HIB)2) as an ultrasensitive (limit of detection of 1.8 part‐per‐billion), highly selective, reversible, and low power chemiresistive sensor for nitric oxide (NO) at room temperature. The Cu3(HIB)2‐based sensors retain their sensing performance in the presence of humidity, and exhibit strong signal enhancement towards NO over other highly toxic reactive gases, such as NO2, H2S, SO2, NH3, CO, as well as CO2. Mechanistic investigations of the Cu3(HIB)2‐NO interaction through spectroscopic analyses and density functional theory revealed that the Cu‐bis(iminobenzosemiquinoid) moieties serve as the binding sites for NO sensing, while the Ni‐bis(iminobenzosemiquinoid) MOF analog shows no noticeable response to NO. Overall, these findings provide a significant advance in the development of crystalline metal‐bis(iminobenzosemiquinoid)‐based conductive 2D MOFs as highly sensitive, selective, and reversible sensing materials for the low‐power detection of toxic gases. 
    more » « less
  2. Abstract Metal–organic frameworks (MOFs) are hybrid materials known for their nanoscale pores, which give them high surface areas but generally lead to poor electrical conductivity. Recently, MOFs with high electrical conductivity were established as promising materials for a variety of applications in energy storage and catalysis. Many recent reports investigating the fundamentals of charge transport in these materials focus on the role of the organic ligands. Less consideration, however, is given to the metal ion forming the MOF, which is almost exclusively a late first‐row transition metal. Here, we report a moderately conductive porous MOF based on trivalent gallium and 2,3,6,7,10,11‐hexahydroxytriphenylene. Gallium, a metal that has not been featured in electrically conductive MOFs so far, has a closed‐shell electronic configuration and is present in its trivalent state—in contrast to most conductive MOFs, which are formed by open‐shell, divalent transition metals. Our material, made without using any harmful solvents, displays conductivities on the level of 3 mS/cm and a surface area of 196 m2/g, comparable to transition metal analogs. 
    more » « less
  3. Metallophthalocyanine (MPc)-linked conductive two-dimensional (2D) metal−organic frameworks (MOFs) hold tremendous promise as modular 2D materials in sensing, catalysis, and energy-related applications due to their combinatory bimetallic system from the MPc core and bridging metal nodes, endowing them with high electrical conductivity and multifunctionality. Despite significant advances, there is a gap in fundamental understanding regarding the periodic effects of metal nodes on the structural properties of MP-linked 2D MOFs. Herein, we report a series of highly crystalline MOFs wherein copper phthalocyanine (CuPc) is linked with Ni, Cu, and Zn nodes (CuPc-O-M, M: Ni, Cu, Zn). The prepared CuPc-O-M MOFs exhibit p-type semiconducting properties with an exceptionally high range of electrical conductivity. Notably, the differences in the 3d orbital configurations of the Ni, Cu, and Zn nodes in CuPc-O-M MOFs lead to perturbations of the interlayer stacking patterns of the 2D framework materials, which ultimately affect material properties, such as semiconducting band gaps and charge transport within the framework. The Cu2+ (3d9) metal node within the eclipsed interlayer stacking of CuPc-O-Cu MOF demonstrates excellent charge transport, which results in the smallest band gap of 1.14 eV and the highest electrical conductivity of 9.3 S m−1, while the Zn2+ (3d10) metal node within CuPc-O-Zn results in a slightly inclined interlayer stacking, leading to the largest band gap of 1.27 eV and the lowest electrical conductivity of 2.9 S m−1. These findings form an important foundation in the strategic molecular design of this class of materials for multifaceted functionality that builds upon the electronic properties of these materials. 
    more » « less
    Free, publicly-accessible full text available March 12, 2026
  4. Free, publicly-accessible full text available December 1, 2025
  5. Free, publicly-accessible full text available December 1, 2025
  6. Thermally regenerative electrochemical cycles and thermogalvanic cells harness redox entropy changes (ΔSrc) to interconvert heat and electricity with applications in heat harvesting and energy storage. Their efficiencies depend on ΔSrc because it relates directly to the Seebeck coefficient, yet few approaches exist for controlling the reaction entropy. Here, we demonstrate the design principle of using highly charged molecular species as electrolytes in thermogalvanic devices. As a proof-of-concept, the highly charged Wells-Dawson ion [P2W18O62]6– exhibits a large ΔSrc (−195 J mol–1 K–1) and a Seebeck coefficient comparable to state-of-the-art electrolytes (−1.7 mV K–1), demonstrating the potential of linking the rich chemistry of polyoxometalates to thermogalvanic technologies. 
    more » « less