skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2000096

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present sufficient conditions so that a conformal map between planar domains whose boundary components are Jordan curves or points has a continuous or homeomorphic extension to the closures of the domains. Our conditions involve the notions of cofat domains and C N E D CNED sets, i.e., countably negligible for extremal distances, recently introduced by the author. We use this result towards establishing conformal rigidity of a class of circle domains. A circle domain is conformally rigid if every conformal map onto another circle domain is the restriction of a Möbius transformation. We show that circle domains whose point boundary components are C N E D CNED are conformally rigid. This result is the strongest among all earlier works and provides substantial evidence towards the rigidity conjecture of He–Schramm [Invent. Math. 115 (1994), no. 2, 297–310], relating the problems of conformal rigidity and removability. 
    more » « less