skip to main content


Search for: All records

Award ID contains: 2000170

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. We present an analytical model describing the transition to a strong coupling regime for an ensemble of emitters resonantly coupled to a localized surface plasmon in a metal–dielectric structure. The response of a hybrid system to an external field is determined by two distinct mechanisms involving collective states of emitters interacting with the plasmon mode. The first mechanism is the near-field coupling between the bright collective state and the plasmon mode, which underpins the energy exchange between the system components and gives rise to exciton-induced transparency minimum in scattering spectra in the weak coupling regime and to emergence of polaritonic bands as the system transitions to the strong coupling regime. The second mechanism is the Fano interference between the plasmon dipole moment and the plasmon-induced dipole moment of the bright collective state as the hybrid system interacts with the radiation field. The latter mechanism is greatly facilitated by plasmon-induced coherence in a system with the characteristic size below the diffraction limit as the individual emitters comprising the collective state are driven by the same alternating plasmon near field and, therefore, all oscillate in phase. This cooperative effect leads to scaling of the Fano asymmetry parameter and of the Fano function amplitude with the ensemble size, and therefore, it strongly affects the shape of scattering spectra for large ensembles. Specifically, with increasing emitter numbers, the Fano interference leads to a spectral weight shift toward the lower energy polaritonic band.

     
    more » « less
  3. Abstract We present a microscopic model describing the transition to a strong coupling regime for an emitter resonantly coupled to a surface plasmon in a metal–dielectric structure. We demonstrate that the shape of scattering spectra is determined by an interplay of two distinct mechanisms. First is the near-field coupling between the emitter and the plasmon mode which underpins energy exchange between the system components and gives rise to exciton-induced transparency minimum in scattering spectra prior to the transition to a strong coupling regime. The second mechanism is the Fano interference between the plasmon dipole and the plasmon-induced emitter’s dipole as the system interacts with the radiation field. We show that the Fano interference can strongly affect the overall shape of scattering spectra, leading to the inversion of spectral asymmetry that was recently reported in the experiment. 
    more » « less
  4. Engheta, Nader ; Noginov, Mikhail A. ; Zheludev, Nikolay I. (Ed.)
  5. We have studied emission kinetics in dye-doped polymeric films (HITC:PMMA), deposited on top of glass and silver and embedded in Fabry–Perot cavities (metal-insulator-metal waveguides). For highly doped films on glass, we observed strong concentration quenching, as evidenced by a dramatic shortening of the emission kinetics, consistent with our previous studies. However, for the same dye-doped films on top of silver, slower emission kinetics were observed despite the high decay rates of individual dye molecules near the metallic surface. The concentration quenching rates in Fabry–Perot cavities were nearly identical to those of HITC:PMMA films deposited on top of silver. These findings are explained within a theoretical model for the inhibition of Förster energy transfer near a metallic surface. Furthermore, the emission kinetics of the dye-doped films on top of silver were approximately single exponential—consistent with the strong coupling of excited molecules with propagating surface plasmons.

     
    more » « less