skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2000288

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study viscosity solutions to the classical one-phase problem and its thin counterpart. In low dimensions, we show that when the free boundary is the graph of a continuous function, the solution is the half-plane solution. This answers, in the salient dimensions, a one-phase free boundary analogue of Bernstein’s problem for minimal surfaces.As an application, we also classify monotone solutions of semilinear equations with a bump-type nonlinearity. 
    more » « less
  2. Abstract We study the existence and structure of branch points in two-phase free boundary problems. More precisely, we construct a family of minimizers to an Alt–Caffarelli–Friedman-type functional whose free boundaries contain branch points in the strict interior of the domain. We also give an example showing that branch points in the free boundary of almost-minimizers of the same functional can have very little structure. This last example stands in contrast with recent results of De Philippis, Spolaor and Velichkov on the structure of branch points in the free boundary of stationary solutions. 
    more » « less
  3. {} 
    more » « less
  4. null (Ed.)