skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2000403

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The disposition of spectral solar irradiance in plant canopies is crucially important to understand processes such as photolysis of molecules amenable to absorbing actinic light. Thus, one objective of this study is to evaluate the most commonly applied radiative transfer approaches to estimate spectral irradiance as a function of plant canopy depth. Eight radiative transfer approaches are ascertained. Another objective is to determine the impacts of the spectral resolution assumed in radiative transfer calculations and model choice on key processes such as canopy absorption and reflection of irradiance. By comparing results from broadband‐only and spectrally‐resolved canopy radiative transfer, we aim to quantitatively determine the uncertainties associated with failing to resolve the sunlight spectra. We determine the optimal spectral resolution required to estimate canopy radiative transfer results such as air‐chemistry‐specific quantities related to photolysis of a select group of molecules. In addition, we evaluate techniques for binning leaf and soil optical properties. Results showed that high spectral resolution is ideally desired to compute photolysis of molecules such as ozone, nitrogen dioxide, nitrate radical, nitrous acid, and formaldehyde. For in‐canopy photolysis of molecules, a waveband resolution of at least 10 nm is sufficient to obtain accurate estimates for most photochemical reactions. Positive reaction‐dependent uncertainties in canopy‐mean relative photolysis values for individual molecules can be as high as 30% compared to estimates derived with broad‐band solar irradiance. 
    more » « less
  2. Professor Jian Zhen Yu (Ed.)
    using a combination of field experiments and numerical simulations. Specifically, Large Eddy Simulations (LES) were used to resolve emissions of isoprene and monoterpenes, turbulent transport, and air chemistry. The coupled chemistry-transport LES included the effects of isoprene and monoterpenes reactivity due to reactions with hydroxyl radical and ozone. The LES results are used to compute vertically resolved budgets of isoprene and monoterpenes in the rainforest canopy in response to emissions, turbulent transport, surface deposition, and air chemistry. Results indicated that emission and dispersion dominated the isoprene budget as the gases were transported out of the canopy space. In a region limited by nitrogen oxides (with prevailing nitric oxide levels of < 0.5 parts per billion), the in-canopy chemical destruction removed approximately 10% of locally emitted monoterpenes. Hydroxyl radical production rates from the ozonolysis of monoterpenes amounted to ≈ 2 × 106 radicals cm􀀀 3 s􀀀 1 and had similar magnitude to the light-dependent hydroxyl radical formation. One key conclusion was that the Amazonia rainforest abundantly emitted monoterpenes whose in-canopy ozonolysis yielded hydroxyl radicals in amounts similar to the magnitude of light-dependent formation. Reactions of monoterpenes and isoprene with hydroxyl radical and ozone were necessary for the maintenance of the Amazon rainforest canopy as a photochemically active environment suitable to generate oxidants and secondary organic aerosols. 
    more » « less
  3. James J. Schauer (Ed.)
    The processes governing the temporal and spatial patterns of isoprene and monoterpenes emitted by a rainforest in the central Amazon region of Brazil is investigated using a combination of field experiments and numerical simulations. Specifically, Large Eddy Simulations (LES) were used to resolve emissions of isoprene and monoterpenes, turbulent transport, and air chemistry. The coupled chemistry-transport LES included the effects of isoprene and monoterpenes reactivity due to reactions with hydroxyl radical and ozone. The LES results are used to compute vertically resolved budgets of isoprene and monoterpenes in the rainforest canopy in response to emissions, turbulent transport, surface deposition, and air chemistry. Results indicated that emission and dispersion dominated the isoprene budget as the gases were transported out of the canopy space. In a region limited by nitrogen oxides (with prevailing nitric oxide levels of < 0.5 parts per billion), the in-canopy chemical destruction removed approximately 10% of locally emitted monoterpenes. Hydroxyl radical production rates from the ozonolysis of monoterpenes amounted to ≈ 2 × 106 radicals cm3 s-1 and had similar magnitude to the light-dependent hydroxyl radical formation. One key conclusion was that the Amazoniarainforest abundantly emitted monoterpenes whose in-canopy ozonolysis yielded hydroxyl radicals in amounts similar to the magnitude of light-dependent formation. Reactions of monoterpenes and isoprene with hydroxyl radical and ozone were necessary for the maintenance of the Amazon rainforest canopy as a photochemically active environment suitable to generate oxidants and secondary organic aerosols. 
    more » « less