Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We describe a new assay that reports directly on the acylation state of a user-chosen transfer RNA (tRNA) in cells. We call this assay 3-Prime Adenosine-Retaining Aminoacyl–tRNA Isolation (PARTI). It relies on high-resolution mass spectrometry identification of the acyl-adenosine species released upon RNase A cleavage of isolated cellular tRNA. Here we develop the PARTI workflow and apply it to understand three recent observations related to the cellular incorporation of non-α-amino acid monomers into protein: (i) the origins of the apparent selectivity of translation with respect to β2-hydroxy acid enantiomers; (ii) the activity of PylRS variants for benzyl derivatives of malonic acid; and (iii) the apparent inability of N-Me amino acids to function as ribosome substrates in living cells. Using the PARTI assay, we also provide direct evidence for the cellular production of 2′,3′-diacylated tRNA in certain cases. The ease and simplicity of the PARTI workflow should benefit ongoing efforts to study and improve the cellular incorporation of non-α-amino acid monomers into proteins.more » « less
- 
            Abstract Structured RNA lies at the heart of many central biological processes, from gene expression to catalysis. RNA structure prediction is not yet possible due to a lack of high-quality reference data associated with organismal phenotypes that could inform RNA function. We present GARNET (Gtdb Acquired RNa with Environmental Temperatures), a new database for RNA structural and functional analysis anchored to the Genome Taxonomy Database (GTDB). GARNET links RNA sequences to experimental and predicted optimal growth temperatures of GTDB reference organisms. Using GARNET, we develop sequence- and structure-aware RNA generative models, with overlapping triplet tokenization providing optimal encoding for a GPT-like model. Leveraging hyperthermophilic RNAs in GARNET and these RNA generative models, we identify mutations in ribosomal RNA that confer increased thermostability to theEscherichia coliribosome. The GTDB-derived data and deep learning models presented here provide a foundation for understanding the connections between RNA sequence, structure, and function.more » « less
- 
            Abstract The ribosome is a ribonucleoprotein complex found in all domains of life. Its role is to catalyze protein synthesis, the messenger RNA (mRNA)-templated formation of amide bonds between α-amino acid monomers. Amide bond formation occurs within a highly conserved region of the large ribosomal subunit known as the peptidyl transferase center (PTC). Here we describe the step-wise design and characterization of mini-PTC 1.1, a 284-nucleotide RNA that recapitulates many essential features of the Escherichia coli PTC. Mini-PTC 1.1 folds into a PTC-like structure under physiological conditions, even in the absence of r-proteins, and engages small molecule analogs of A- and P-site tRNAs. The sequence of mini-PTC 1.1 differs from the wild type E. coli ribosome at 12 nucleotides that were installed by a cohort of citizen scientists using the on-line video game Eterna. These base changes improve both the secondary structure and tertiary folding of mini-PTC 1.1 as well as its ability to bind small molecule substrate analogs. Here, the combined input from Eterna citizen-scientists and RNA structural analysis provides a robust workflow for the design of a minimal PTC that recapitulates many features of an intact ribosome.more » « less
- 
            Abstract As genetic code expansion advances beyondl-α-amino acids to backbone modifications and new polymerization chemistries, delineating what substrates the ribosome can accommodate remains a challenge. TheEscherichia coliribosome tolerates non-l-α-amino acids in vitro, but few structural insights that explain how are available, and the boundary conditions for efficient bond formation are so far unknown. Here we determine a high-resolution cryogenic electron microscopy structure of theE. coliribosome containing α-amino acid monomers and use metadynamics simulations to define energy surface minima and understand incorporation efficiencies. Reactive monomers across diverse structural classes favour a conformational space where the aminoacyl-tRNA nucleophile is <4 Å from the peptidyl-tRNA carbonyl with a Bürgi–Dunitz angle of 76–115°. Monomers with free energy minima that fall outside this conformational space do not react efficiently. This insight should accelerate the in vivo and in vitro ribosomal synthesis of sequence-defined, non-peptide heterooligomers.more » « less
- 
            Abstract The absence of orthogonal aminoacyl-transfer RNA (tRNA) synthetases that accept non-l-α-amino acids is a primary bottleneck hindering the in vivo translation of sequence-defined hetero-oligomers and biomaterials. Here we report that pyrrolysyl-tRNA synthetase (PylRS) and certain PylRS variants accept α-hydroxy, α-thio andN-formyl-l-α-amino acids, as well as α-carboxy acid monomers that are precursors to polyketide natural products. These monomers are accommodated and accepted by the translation apparatus in vitro; those with reactive nucleophiles are incorporated into proteins in vivo. High-resolution structural analysis of the complex formed between one PylRS enzyme and am-substituted 2-benzylmalonic acid derivative revealed an active site that discriminates prochiral carboxylates and accommodates the large size and distinct electrostatics of an α-carboxy substituent. This work emphasizes the potential of PylRS-derived enzymes for acylating tRNA with monomers whose α-substituent diverges substantially from the α-amine of proteinogenic amino acids. These enzymes or derivatives thereof could synergize with natural or evolved ribosomes and/or translation factors to generate diverse sequence-defined non-protein heteropolymers.more » « less
- 
            Free, publicly-accessible full text available September 2, 2026
- 
            Free, publicly-accessible full text available August 21, 2026
- 
            Free, publicly-accessible full text available August 1, 2026
- 
            Free, publicly-accessible full text available July 4, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
