skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2002328

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Substantial changes in terrestrial hydroclimate during the Holocene are recorded in geological archives and simulated by computer models. To identify spatial and temporal patterns during the past 12 ka, proxy records sensitive to changing precipitation and effective moisture (precipitation minus evaporation) were compiled from across the globe (n = 813). Proxy composite timeseries were computed for 30 of the IPCC AR6 regions and compared to two full‐Holocene transient model simulations (TraCE‐21ka and HadCM3) and twelve mid‐Holocene CMIP6 simulations. We find that throughout Northern Hemisphere monsoon regions, proxy and model simulations indicate wetter‐than‐modern conditions during the early and mid‐Holocene while Southern Hemisphere monsoon regions were drier. This insolation driven trend toward modern values began approximately 6,000 years ago, and the clear agreement among proxy records and models may reflect the large magnitude of precipitation change and consistent atmospheric circulation forcing mechanism for these regions. In the midlatitudes, the pattern of change is less certain. Generally, proxy composites show a wetting trend throughout the Holocene for the northern midlatitudes, possibly due to strengthening westerlies from an increasing latitudinal temperature gradient. However, simulations indicate that the magnitude of change was relatively low, and for portions of North America, there is a proxy‐model disagreement. At high latitudes, hydroclimate is positively correlated with temperature in both proxies and models, consistent with projected wetting as temperatures rise. Overall, this large proxy database reveals a coherent pattern of hydroclimate variability despite the challenges associated with reconstructing hydroclimate fields. 
    more » « less
  2. Abstract The North American monsoon (NAM) is an important source of rainfall to much of Mexico and southwestern United States. Westerly winds (westerlies) can suppress monsoon circulation and impact monsoon timing, intensity, and extent. Recent Arctic warming is reducing the temperature gradient between the equator and the pole, which could weaken the westerlies; however, the implications of these changes on the NAM are uncertain. Here we present a new composite index of the Holocene NAM. We find monsoon strength reached a maximum circa 7,000 years ago and has weakened since then. Proxy observations of temperature, hydroclimate and upwelling, along with model simulations, show that the NAM was modulated by the westerlies over the Holocene. If the observed Holocene pattern holds for current warming, a weaker meridional temperature gradient and weaker westerlies could lead to a stronger future NAM. 
    more » « less