skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2002370

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Paleocene‐Eocene Thermal Maximum (PETM; 56 Ma) is considered to be one of the best analogs for future climate change. The carbon isotope composition (δ13C) ofn‐alkanes derived from leaf waxes of terrestrial plants and marine algae can provide important insights into the carbon cycle perturbation during the PETM. Here, we present new organic geochemical data and compound‐specific δ13C data from sediments recovered from an early Cenozoic basin‐margin succession from Spitsbergen. These samples represent one of the most expanded PETM sites and provide new insights into the high Arctic response to the PETM. Our results reveal a synchronous ∼−6.5‰ carbon isotope excursion (CIE) in short‐chainn‐alkanes (nC19; marine algae/bacteria) with a ∼−5‰ CIE in long‐chainn‐alkanes (nC29andnC31; plant waxes) during the peak of the PETM. Although δ13Cn‐alkanesvalues were potentially affected via a modest thermal effect (1‰–2‰), the relative changes in the δ13Cn‐alkanesremain robust. A simple carbon cycle modeling suggests peak carbon emission rate could be ∼3 times faster than previously suggested using δ13CTOCrecords. The CIE magnitude of both δ13Cn‐C19and δ13Cn‐C29can be explained by the elevated influence of13C‐depleted respired CO2in the water column and increased water availability on land, elevatedpCO2in the atmosphere, and changes in vegetation type during the PETM. The synchronous decline in δ13C of both leaf waxes and marine algae/bacteria argues against a significant contribution to the sedimentary organic carbon pool from the weathering delivery of fossiln‐alkanes in the Arctic region. 
    more » « less