- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Armour, Kyle C (1)
-
Burls, Natalie (1)
-
Cooper, Vincent T (1)
-
Dvorak, Michelle (1)
-
Feng, Ran (1)
-
Proistosescu, Cristian (1)
-
Zhu, Jiang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Characterized by similar-to-today CO2 (∼400 ppm) and surface temperatures approximately 3°–4°C warmer than the preindustrial, the mid-Pliocene warm period (mPWP) has often been used as an analog for modern CO2-driven climate change and as a constraint on the equilibrium climate sensitivity (ECS). However, model intercomparison studies suggest that non-CO2boundary conditions—such as changes in ice sheets—contribute substantially to the higher global mean temperatures and strongly shape the pattern of sea surface warming during the mPWP. Here, we employ a set of CESM2 simulations to quantify mPWP effective radiative forcings, study the role of ocean circulation changes in shaping the patterns of sea surface temperatures, and calculate radiative feedbacks during the mPWP. We find that the non-CO2boundary conditions of the mPWP, enhanced by changes in ocean circulation, contributed to larger high-latitude warming and less-stabilizing feedbacks relative to those induced by CO2alone. Accounting for differences in feedbacks between the mPWP and the modern (greenhouse gas–driven) climate provides stronger constraints on the high-end of modern-day ECS. However, a quantification of the forcing of non-CO2boundary condition changes combined with the distinct radiative feedbacks that they induce suggests that Earth system sensitivity may be higher than previously estimated.more » « lessFree, publicly-accessible full text available July 1, 2026
An official website of the United States government
