Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The number of structural studies of peptoids has grown dramatically over the past 20 years. To date, over 100 high‐resolution structures have been reported for peptoids, which are typically defined as N‐substituted glycine oligomers. We have collected these structures and standardized their sequence representations to facilitate structural analysis as the dataset continues to grow. These structures are presented online as The Peptoid Data Bank (databank.peptoids.org), which also provides persistent links to the published structural data. This review analyzes the present collection of structures and finds extensive support for grouping side chains by their chemistry at the position adjacent to the backbone nitrogen. Groups of side chains with similar chemistry at this position show similar influences on the conformational preferences of the backbone. We also observe a relationship between the side chain and backbone conformations for many monomers that has not previously attracted significant discussion: the values of the χ1and ϕ dihedrals are correlated. We outline a general design strategy for attaining a specific backbone conformation based on the patterns seen in the collected structures.more » « less
-
Abstract Despite recent progress, it remains challenging to program biomacromolecules to assemble into discrete nanostructures with pre‐determined sizes and topologies. We report here a novel strategy to address this challenge. By using two orthogonal pairs of heterodimeric coiled coils as the building blocks, we constructed six discrete supramolecular assemblies, each composed of a prescribed number of coiled coil components. Within these assemblies, different coiled coils were connected via end‐to‐side covalent linkages strategically pre‐installed between the non‐complementary pairs. The overall topological features of two highly complex assemblies, a “barbell” and a “quadrilateral” form, were characterized experimentally and were in good agreement to the designs. This work expands the design paradigms for peptide‐based discrete supramolecular assemblies and will provide a route for de novo fabrication of functional protein materials.more » « less
An official website of the United States government
