skip to main content

Search for: All records

Award ID contains: 2002936

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Fluorophores with high quantum yields, extended maximum emission wavelengths, and long photoluminescence (PL) lifetimes are still lacking for sensing and imaging applications in the second near‐infrared window (NIR‐II). In this work, a series of rod‐shaped icosahedral nanoclusters with bright NIR‐II PL, quantum yields up to8%, and a peak emission wavelength of 1520 nm are reported. It is found that the bright NIR‐II emission arises from a previously ignored state with near‐zero oscillator strength in the ground‐state geometry and the central Au atom in the nanoclusters suppresses the non‐radiative transitions and enhances the overall PL efficiency. In addition, a framework is developed to analyze and relate the underlying transitions for the absorptions and the NIR‐II emissions in the Au nanoclusters based on the experimentally defined absorption coefficient. Overall, this work not only shows good performance of the rod‐shaped icosahedral series of Au nanoclusters as NIR‐II fluorophores, but also unravels the fundamental electronic transitions and atomic‐level structure‐property relations for the enhancement of the NIR‐II PL in gold nanoclusters. The framework developed here also provides a simple method to analyze the underlying electronic transitions in metal nanoclusters.

  2. Abstract

    Deciphering the complicated excited-state process is critical for the development of luminescent materials with controllable emissions in different applications. Here we report the emergence of a photo-induced structural distortion accompanied by an electron redistribution in a series of gold nanoclusters. Such unexpected slow process of excited-state transformation results in near-infrared dual emission with extended photoluminescent lifetime. We demonstrate that this dual emission exhibits highly sensitive and ratiometric response to solvent polarity, viscosity, temperature and pressure. Thus, a versatile luminescent nano-sensor for multiple environmental parameters is developed based on this strategy. Furthermore, we fully unravel the atomic-scale structural origin of this unexpected excited-state transformation, and demonstrate control over the transition dynamics by tailoring the bi-tetrahedral core structures of gold nanoclusters. Overall, this work provides a substantial advance in the excited-state physical chemistry of luminescent nanoclusters and a general strategy for the rational design of next-generation nano-probes, sensors and switches.

  3. Nanocluster-based photoresists enable 3D printing of polymer nanocomposites with enhanced mechanical strength and stability.
    Free, publicly-accessible full text available November 18, 2023