skip to main content


Search for: All records

Award ID contains: 2003257

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 24, 2024
  2. The application of the latest techniques from artificial intelligence (AI) and machine learning (ML) to improve and automate the decision-making required for solving real-world network security and performance problems (NetAI, for short) has generated great excitement among networking researchers. However, network operators have remained very reluctant when it comes to deploying NetAI-based solutions in their production networks, mainly because the black-box nature of the underlying learning models forces operators to blindly trust these models without having any understanding of how they work, why they work, or when they don't work (and why not). Paraphrasing [1], we argue that to overcome this roadblock and ensure its future success in practice, NetAI has to get past its current stage of explorimentation, or the practice of poking around to see what happens and has to start employing tools of the scientific method.

     
    more » « less
    Free, publicly-accessible full text available September 28, 2024
  3. The application of the latest techniques from artificial intelligence (AI) and machine learning (ML) to improve and automate the decision-making required for solving real-world network security and performance problems (NetAI, for short) has generated great excitement among networking researchers. However, network operators have remained very reluctant when it comes to deploying NetAIbased solutions in their production networks. In Part I of this manifesto, we argue that to gain the operators' trust, researchers will have to pursue a more scientific approach towards NetAI than in the past that endeavors the development of explainable and generalizable learning models. In this paper, we go one step further and posit that this opening up of NetAI research will require that the largely self-assured hubris about NetAI gives way to a healthy dose humility. Rather than continuing to extol the virtues and magic of black-box models that largely obfuscate the critical role of the utilized data play in training these models, concerted research efforts will be needed to design NetAI-driven agents or systems that can be expected to perform well when deployed in production settings and are also required to exhibit strong robustness properties when faced with ambiguous situations and real-world uncertainties. We describe one such effort that is aimed at developing a new ML pipeline for generating trained models that strive to meet these expectations and requirements.

     
    more » « less
    Free, publicly-accessible full text available September 28, 2024
  4. System operators are often interested in extracting different feature streams from multi-dimensional data streams; and reporting their distributions at regular intervals, including the heavy hitters that contribute to the tail portion of the feature distribution. Satisfying these requirements to increase data rates with limited resources is challenging. This paper presents the design and implementation of Panakos that makes the best use of available resources to report a given feature's distribution accurately, its tail contributors, and other stream statistics (e.g., cardinality, entropy, etc.). Our key idea is to leverage the skewness inherent to most feature streams in the real world. We leverage this skewness by disentangling the feature stream into hot, warm, and cold items based on their feature values. We then use different data structures for tracking objects in each category. Panakos provides solid theoretical guarantees and achieves high performance for various tasks. We have implemented Panakos on both software and hardware and compared Panakos to other state-of-the-art sketches using synthetic and real-world datasets. The experimental results demonstrate that Panakos often achieves one order of magnitude better accuracy than the state-of-the-art solutions for a given memory budget. 
    more » « less
  5. Chaudhuri, Kamalika and (Ed.)
    We study the problem of reinforcement learning (RL) with low (policy) switching cost {—} a problem well-motivated by real-life RL applications in which deployments of new policies are costly and the number of policy updates must be low. In this paper, we propose a new algorithm based on stage-wise exploration and adaptive policy elimination that achieves a regret of $\widetilde{O}(\sqrt{H^4S^2AT})$ while requiring a switching cost of $O(HSA \log\log T)$. This is an exponential improvement over the best-known switching cost $O(H^2SA\log T)$ among existing methods with $\widetilde{O}(\mathrm{poly}(H,S,A)\sqrt{T})$ regret. In the above, $S,A$ denotes the number of states and actions in an $H$-horizon episodic Markov Decision Process model with unknown transitions, and $T$ is the number of steps. As a byproduct of our new techniques, we also derive a reward-free exploration algorithm with a switching cost of $O(HSA)$. Furthermore, we prove a pair of information-theoretical lower bounds which say that (1) Any no-regret algorithm must have a switching cost of $\Omega(HSA)$; (2) Any $\widetilde{O}(\sqrt{T})$ regret algorithm must incur a switching cost of $\Omega(HSA\log\log T)$. Both our algorithms are thus optimal in their switching costs. 
    more » « less
  6. Goal-oriented Reinforcement Learning, where the agent needs to reach the goal state while simultaneously minimizing the cost, has received significant attention in real-world applications. Its theoretical formulation, stochastic shortest path (SSP), has been intensively researched in the online setting. Nevertheless, it remains understudied when such an online interaction is prohibited and only historical data is provided. In this paper, we consider the offline stochastic shortest path problem when the state space and the action space are finite. We design the simple value iteration-based algorithms for tackling both offline policy evaluation (OPE) and offline policy learning tasks. Notably, our analysis of these simple algorithms yields strong instance-dependent bounds which can imply worst-case bounds that are near-minimax optimal. We hope our study could help illuminate the fundamental statistical limits of the offline SSP problem and motivate further studies beyond the scope of current consideration. 
    more » « less
  7. Offline reinforcement learning, which seeks to utilize offline/historical data to optimize sequential decision-making strategies, has gained surging prominence in recent studies. Due to the advantage that appropriate function approximators can help mitigate the sample complexity burden in modern reinforcement learning problems, existing endeavors usually enforce powerful function representation models (e.g. neural networks) to learn the optimal policies. However, a precise understanding of the statistical limits with function representations, remains elusive, even when such a representation is linear. Towards this goal, we study the statistical limits of offline reinforcement learning with linear model representations. To derive the tight offline learning bound, we design the variance-aware pessimistic value iteration (VAPVI), which adopts the conditional variance information of the value function for time-inhomogeneous episodic linear Markov decision processes (MDPs). VAPVI leverages estimated variances of the value functions to reweight the Bellman residuals in the least-square pessimistic value iteration and provides improved offline learning bounds over the best-known existing results (whereas the Bellman residuals are equally weighted by design). More importantly, our learning bounds are expressed in terms of system quantities, which provide natural instance-dependent characterizations that previous results are short of. We hope our results draw a clearer picture of what offline learning should look like when linear representations are provided. 
    more » « less
  8. Monitoring performance and availability are critical to operating successful content distribution networks. Internet measurements provide the data needed for traffic engineering, alerting, and network diagnostics. While there are significant benefits to performing end-user active measurements, these capabilities are limited to a small number of content providers with application control. In this work, we present a solution to the long-standing problem of issuing active measurements from clients without requiring application control, e.g., injecting JavaScript to the content served. Our approach uses server-side programmable features of the Network Error Logging specification that allow a CDN to induce a browser connection to an HTTPS server of the CDN's choosing without application control. 
    more » « less
  9. Degradation or failure events in optical backbone networks affect the service level agreements for cloud services. It is critical to detect and troubleshoot these events promptly to minimize their impact. Existing telemetry systems rely on arcane tools (e.g., SNMP) and vendor-specific controllers to collect optical data, which affects both the flexibility and scale of these systems. As a result, they fail to collect the required data on time to detect and troubleshoot degradation or failure events in a timely fashion. This paper presents the design and implementation of OpTel, an optical telemetry system, that uses a centralized vendor-agnostic controller to collect optical data in a streaming fashion. More specifically, it offers flexible vendor-agnostic interfaces between the optical devices and the controller and offloads data-management tasks (e.g., creating a queryable database) from the devices to the controller. As a result, OpTel enables the collection of fine-grained optical telemetry data at the one-second granularity. It has been running in Tencent's optical backbone network for the past six months. The fine-grained data collection enables the detection of short-lived events (i.e., ephemeral events). Compared to existing telemetry systems, OpTel accurately detects 2x more optical events. It also enables troubleshooting of these optical events in a few seconds, which is orders of magnitude faster than the state-of-the-art. 
    more » « less
  10. Several recent research efforts have proposed Machine Learning (ML)-based solutions that can detect complex patterns in network traffic for a wide range of network security problems. However, without understanding how these black-box models are making their decisions, network operators are reluctant to trust and deploy them in their production settings. One key reason for this reluctance is that these models are prone to the problem of underspecification, defined here as the failure to specify a model in adequate detail. Not unique to the network security domain, this problem manifests itself in ML models that exhibit unexpectedly poor behavior when deployed in real-world settings and has prompted growing interest in developing interpretable ML solutions (e.g., decision trees) for “explaining” to humans how a given black-box model makes its decisions. However, synthesizing such explainable models that capture a given black-box model’s decisions with high fidelity while also being practical (i.e., small enough in size for humans to comprehend) is challenging. In this paper, we focus on synthesizing high-fidelity and low-complexity decision trees to help network operators determine if their ML models suffer from the problem of underspecification. To this end, we present TRUSTEE, a framework that takes an existing ML model and training dataset generate a high-fidelity, easy-to-interpret decision tree, and associated trust report. Using published ML models that are fully reproducible, we show how practitioners can use TRUSTEE to identify three common instances of model underspecification, i.e., evidence of shortcut learning, spurious correlations, and vulnerability to out-of-distribution samples. 
    more » « less