skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2003350

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pectobacterium carotovorumis an important plant pathogen responsible for the destruction of crops through bacterial soft rot, which is modulated by oxygen (O2) concentration. A soluble globin coupled sensor protein,PccDgcO (also referred to asPccGCS) is one way through whichP. carotovorumsenses oxygen. DgcO contains a diguanylate cyclase output domain producing c-di-GMP. Synthesis of the bacterial second messenger c-di-GMP is increased upon oxygen binding to the sensory globin domain. This work seeks to understand regulation of function by DgcO at the transcript level. RNA sequencing and differential expression analysis revealed that the deletion of DgcO only affects transcript levels in cells grown under aerobic conditions. Differential expression analysis showed that DgcO deletion alters transcript levels for metal transporters. These results, followed by inductively coupled plasma—mass spectrometry showing decreased concentrations of six biologically relevant metals upon DgcO deletion, provide evidence that a globin coupled sensor can affect cellular metal content. These findings improve the understanding of the transcript level control of O2-dependent phenotypes in an important phytopathogen and establish a basis for further studies on c-di-GMP-dependent functions inP. carotovorum. 
    more » « less
  2. Bacteria sense and respond to gaseous ligand changes in the environment to regulate a multitude of behaviors, including the production of the secondary messengers cyclic di-GMP. Gas sensing can be difficult to measure due to the high concentration of the oxygen in the atmosphere, particularly in redox sensitive systems. Here, we describe a method for anaerobic quantification of cyclic di-GMP production which can be used to measure the impact of molecular oxygen, nitric oxide, and carbon monoxide on the catalysis of a diguanylate cyclase-containing protein and the possible pitfalls in the experimental procedure. 
    more » « less
  3. A spectrophotometric method to measure hydrolysis of the bacterial second messenger cyclic dimeric guanosine monophosphate is described for characterization of enzymes under aerobic and anaerobic conditions. The method allows for obtaining all necessary data to calculate KM and kcat from reactions within a single 96-well plate that be can measured using a standard plate reader. The spectrophotometric assay has been used to measure the rates and obtain Michaelis-Menten for the c-di-GMP phosphodiesterase DcpG with the sensor domain in various ligation states. 
    more » « less
  4. Cyclic dimeric guanosine monophosphate (c-di-GMP) serves as a second messenger that modulates bacterial cellular processes, including biofilm formation. While proteins containing both c-di-GMP synthesizing (GGDEF) and c-di-GMP hydrolyzing (EAL) domains are widely predicted in bacterial genomes, it is poorly understood how domains with opposing enzymatic activity are regulated within a single polypeptide. Herein, we report the characterization of a globin-coupled sensor protein (GCS) fromPaenibacillus dendritiformis(DcpG) with bifunctional c-di-GMP enzymatic activity. DcpG contains a regulatory sensor globin domain linked to diguanylate cyclase (GGDEF) and phosphodiesterase (EAL) domains that are differentially regulated by gas binding to the heme; GGDEF domain activity is activated by the Fe(II)-NO state of the globin domain, while EAL domain activity is activated by the Fe(II)-O2state. The in vitro activity of DcpG is mimicked in vivo by the biofilm formation ofP. dendritiformisin response to gaseous environment, with nitric oxide conditions leading to the greatest amount of biofilm formation. The ability of DcpG to differentially control GGDEF and EAL domain activity in response to ligand binding is likely due to the unusual properties of the globin domain, including rapid ligand dissociation rates and high midpoint potentials. Using structural information from small-angle X-ray scattering and negative stain electron microscopy studies, we developed a structural model of DcpG, providing information about the regulatory mechanism. These studies provide information about full-length GCS protein architecture and insight into the mechanism by which a single regulatory domain can selectively control output domains with opposing enzymatic activities. 
    more » « less