skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2003720

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary A general, rectangular kernel matrix may be defined as where is a kernel function and where and are two sets of points. In this paper, we seek a low‐rank approximation to a kernel matrix where the sets of points and are large and are arbitrarily distributed, such as away from each other, “intermingled”, identical, and so forth. Such rectangular kernel matrices may arise, for example, in Gaussian process regression where corresponds to the training data and corresponds to the test data. In this case, the points are often high‐dimensional. Since the point sets are large, we must exploit the fact that the matrix arises from a kernel function, and avoid forming the matrix, and thus ruling out most algebraic techniques. In particular, we seek methods that can scale linearly or nearly linearly with respect to the size of data for a fixed approximation rank. The main idea in this paper is to geometrically select appropriate subsets of points to construct a low rank approximation. An analysis in this paper guides how this selection should be performed. 
    more » « less