Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Proline‐rich macrocyclic peptides (PRMPs) are natural products present in geographically and phylogenetically dispersed marine sponges. The large diversity and low abundance of PRMPs in sponge metabolomes precludes isolation and structure elucidation of each individual PRMP congener. Here, using standards developed via biomimetic enzymatic synthesis of PRMPs, a mass spectrometry‐based workflow to sequence PRMPs was developed and validated to reveal that the diversity of PRMPs in marine sponges is much greater than that has been realized by natural product isolation‐based strategies. Findings are placed in the context of diversity‐oriented transamidative macrocyclization of peptide substrates in sponge holobionts.more » « less
-
Sponges (Porifera) contain many peptide-specialized metabolites with potent biological activities and significant roles in shaping marine ecology. It is well established that symbiotic bacteria produce bioactive “sponge” peptides, both on the ribosome (RiPPs) and nonribosomally. Here, we demonstrate that sponges themselves also produce many bioactive macrocyclic peptides, such as phakellistatins and related proline-rich macrocyclic peptides (PRMPs). Using theStylissa carterisponge transcriptome, methods were developed to find sequences encoding 46 distinct RiPP-type core peptides, of which ten encoded previously identified PRMP sequences. With this basis set, the genome and transcriptome of the spongeAxinella corrugatawas interrogated to find 35 PRMP precursor peptides encoding 31 unique core peptide sequences. At least 11 of these produced cyclic peptides that were present in the sponge and could be characterized by mass spectrometry, including stylissamides A-D and seven previously undescribed compounds. Precursor peptides were encoded in theA. corrugatagenome, confirming their animal origin. The peptides contained signal peptide sequences and highly repetitive recognition sequence-core peptide elements with up to 25 PRMP copies in a single precursor. In comparison to sponges without PRMPs, PRMP sponges are incredibly enriched in potentially secreted polypeptides, with >23,000 individual signal peptide encoding genes found in a single transcriptome. The similarities between PRMP biosynthetic genes and neuropeptides in terms of their biosynthetic logic suggest a fundamental biology linked to circular peptides, possibly indicating a widespread and underappreciated diversity of signaling peptide post-translational modifications across the animal kingdom.more » « less
-
Traxler, Matthew F. (Ed.)ABSTRACT Marine sponge holobionts are prolific sources of natural products. One of the most geographically widespread classes of sponge-derived natural products is the bromotyrosine alkaloids. A distinguishing feature of bromotyrosine alkaloids is that they are present in phylogenetically disparate sponges. In this study, using sponge specimens collected from Guam, the Solomon Islands, the Florida Keys, and Puerto Rico, we queried whether the presence of bromotyrosine alkaloids potentiates metabolomic and microbiome conservation among geographically distant and phylogenetically different marine sponges. A multi-omic characterization of sponge holobionts revealed vastly different metabolomic and microbiome architectures among different bromotyrosine alkaloid-harboring sponges. However, we find statistically significant correlations between the microbiomes and metabolomes, signifying that the microbiome plays an important role in shaping the overall metabolome, even in low-microbial-abundance sponges. Molecules mined from the polar metabolomes of these sponges revealed conservation of biosynthetic logic between bromotyrosine alkaloids and brominated pyrrole-imidazole alkaloids, another class of marine sponge-derived natural products. In light of prior findings postulating the sponge host itself to be the biosynthetic source of bromotyrosine alkaloids, our data now set the stage for investigating the causal relationships that dictate the microbiome-metabolome interconnectedness for marine sponges in which the microbiome may not contribute to natural product biogenesis. IMPORTANCE Our work demonstrates that phylogenetically and geographically distant sponges with very different microbiomes can harbor natural product chemical classes that are united in their core chemical structures and biosynthetic logic. Furthermore, we show that independent of geographical dispersion, natural product chemistry, and microbial abundance, overall sponge metabolomes tightly correlate with their microbiomes.more » « less
An official website of the United States government
