skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2004618

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Willsboro–Lewis wollastonite district occurs along the margin of the 1.15-Ga Marcy anorthosite massif in the Adirondack Highlands (New York) and records mineralogical and isotopic evidence for formation in the anorthosite’s low-pressure metamorphic contact aureole. Wollastonite–garnet–pyroxene gneisses in the ~25-km-long, 1.5-km-thick skarn belt are mined for wollastonite and are intercalated with massive garnetite and pyroxene ± garnet skarns, all of which have low oxygen isotope ratios indicating circulation of heated meteoric water and relatively shallow depths above the brittle–ductile transition during their formation. Anorthosite, skarns, and country rocks were all variably deformed and recrystallized at depths of 25 to 30 km during the 1.09- to 1.02-Ga Ottawan phase, and locally altered during the 1.01- to 0.98-Ga Rigolet phase, of the Grenvillian orogeny. This study examined rare zircon in low-δ18O skarn rocks to constrain the timing of surface-derived meteoric water infiltration. Zircon was dated, and trace elements were measured by laser-ablation ICPMS, and oxygen isotopes were measured by ion microprobe, yielding a spectrum of ages and oxygen isotope ratios reflecting the polymetamorphic history of these rocks. Most samples are dominated by metamorphic zircon having Ottawan or Rigolet 207Pb/206Pb ages and are in high-temperature oxygen isotopic equilibrium with host wollastonite, garnet and/or pyroxene. Several samples contain igneous zircon with disturbed U–Pb isotope systematics, reflecting some combination of new zircon growth and recrystallization during subsequent metamorphism. Relict 1150–1140 Ma ages are preserved in some zircon cores, which are taken as the ages of igneous zircon incorporated during skarn formation or from protoliths. Some of these 1150 to 1140 Ma cores preserve the low-δ18O record of interaction with meteoric water. Ages seen in the Willsboro–Lewis skarns reproduce the span of igneous, disturbed and metamorphic ages in Adirondack anorthosite, and point to contemporaneous anorthosite emplacement, meteoric water circulation and skarn formation at ca. 1150 Ma. This result is consistent with shallow emplacement of the Marcy anorthosite massif during crustal thinning related to the collapse of the 1.19- to 1.14-Ga Shawinigan orogeny, and that granulite facies overprinting was a later tectonic event. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract RationaleThe use of secondary ion mass spectrometry (SIMS) to perform micrometer‐scalein situcarbon isotope (δ13C) analyses of shells of marine microfossils called planktic foraminifers holds promise to explore calcification and ecological processes. The potential of this technique, however, cannot be realized without comparison to traditional whole‐shell δ13C values measured by gas source mass spectrometry (GSMS). MethodsPaired SIMS and GSMS δ13C values measured from final chamber fragments of the same shell of the planktic foraminiferOrbulina universaare compared. The SIMS–GSMS δ13C differences (Δ13CSIMS‐GSMS) were determined via paired analysis of hydrogen peroxide‐cleaned fragments of modern cultured specimens and of fossil specimens from deep‐sea sediments that were either untreated, sonicated, and cleaned with hydrogen peroxide or vacuum roasted. After treatment, fragments were analyzed by a CAMECA IMS 1280 SIMS instrument and either a ThermoScientific MAT‐253 or a Fisons Optima isotope ratio mass spectrometer (GSMS). ResultsPaired analyses of cleaned fragments of cultured specimens (n = 7) yield no SIMS–GSMS δ13C difference. However, paired analyses of untreated (n = 18) and cleaned (n = 12) fragments of fossil shells yield average Δ13CSIMS‐GSMSvalues of 0.8‰ and 0.6‰ (±0.2‰, 2 SE), respectively, while vacuum roasting of fossil shell fragments (n = 11) removes the SIMS–GSMS δ13C difference. ConclusionsThe noted Δ13CSIMS‐GSMSvalues are most likely due to matrix effects causing sample–standard mismatch for SIMS analyses but may also be a combination of other factors such as SIMS measurement of chemically bound water. The volume of material analyzed via SIMS is ~105times smaller than that analyzed by GSMS; hence, the extent to which these Δ13CSIMS‐GSMSvalues represent differences in analyte or instrument factors remains unclear. 
    more » « less
  3. IntroductionAstarte borealisholds great potential as an archive of seasonal paleoclimate, especially due to its long lifespan (several decades to more than a century) and ubiquitous distribution across high northern latitudes. Furthermore, recent work demonstrates that the isotope geochemistry of the aragonite shell is a faithful proxy of environmental conditions. However, the exceedingly slow growth rates ofA. borealisin some locations (<0.2mm/year) make it difficult to achieve seasonal resolution using standard micromilling techniques for conventional stable isotope analysis. Moreover, oxygen isotope (δ18O) records from species inhabiting brackish environments are notoriously difficult to use as paleoclimate archives because of the simultaneous variation in temperature and δ18Owatervalues. MethodsHere we use secondary ion mass spectrometry (SIMS) to microsample anA. borealisspecimen from the southern Baltic Sea, yielding 451 SIMS δ18Oshellvalues at sub-monthly resolution. ResultsSIMS δ18Oshellvalues exhibit a quasi-sinusoidal pattern with 24 local maxima and minima coinciding with 24 annual growth increments between March 1977 and the month before specimen collection in May 2001. DiscussionAge-modeled SIMS δ18Oshellvalues correlate significantly with bothin situtemperature measured from shipborne CTD casts (r2 = 0.52, p<0.001) and sea surface temperature from the ORAS5-SST global reanalysis product for the Baltic Sea region (r2 = 0.42, p<0.001). We observe the strongest correlation between SIMS δ18Oshellvalues and salinity when both datasets are run through a 36-month LOWESS function (r2 = 0.71, p < 0.001). Similarly, we find that LOWESS-smoothed SIMS δ18Oshellvalues exhibit a moderate correlation with the LOWESS-smoothed North Atlantic Oscillation (NAO) Index (r2 = 0.46, p<0.001). Change point analysis supports that SIMS δ18Oshellvalues capture a well-documented regime shift in the NAO circa 1989. We hypothesize that the correlation between the SIMS δ18Oshelltime series and the NAO is enhanced by the latter’s influence on the regional covariance of water temperature and δ18Owatervalues on interannual and longer timescales in the Baltic Sea. These results showcase the potential for SIMS δ18Oshellvalues inA. borealisshells to provide robust paleoclimate information regarding hydroclimate variability from seasonal to decadal timescales. 
    more » « less
  4. Abstract Comet 81P/Wild 2 is a ∼4.5 km-sized primordial object that almost has not been modified by internal heating by26Al decay. Its nucleus could have been formed by hierarchical agglomeration or gravitational collapse of pebble swarms concentrated by streaming instability. To shed light on the cometesimal formation mechanism from laboratory sample analysis, we reexamined the26Al–26Mg isotope systematics of the plagioclase-bearing fragment, Pyxie (from Wild 2 track 81), with significantly improved analytical precision. The revised upper limit of the initial (26Al/27Al)0of Pyxie is ≤1.5 × 10−6, 2 times smaller than those estimated from other Wild 2 fragments. Assuming homogenous distribution of26Al in the early solar system, the minimum crystallization age of Pyxie is estimated to be >3.6 Ma after calcium–aluminum-rich inclusions. Additional petrologic examination demonstrated that it is a chondrule fragment formed in disk environments enriched in moderately volatile elements comparable to the Si-rich rim of CR chondrules before accreting by comet Wild 2. The late accretion of the Wild 2 nucleus with most silicates likely from a common source are not favored by the hierarchical agglomeration model that considers early and continuous accretion. Instead, the results are more in line with comet formation by gentle gravitational collapse of pebbles when the26Al abundance is extremely low (26Al/27Al ≤ 1.5 × 10−6) before gas dispersal. 
    more » « less
  5. Abstract Enabling the build-up of continental crust is a vital step in the stabilization of cratonic lithosphere. However, these initial crustal nuclei are commonly either destroyed by recycling or buried by younger rocks. In the Fennoscandian Shield, the oldest rocks are ca. 3.5 Ga, but ca. 3.7 Ga inherited and detrital zircons suggest the presence of an older, unexposed crustal substrate. We present U-Pb, O, and Hf isotope data from detrital zircons of three major Finnish rivers as well as zircon O and Hf isotope data from previously dated rocks of the Archean Suomujärvi and Pudasjärvi complexes, central Finland. Combined, these data indicate a previously unidentified ca. 3.75 Ga crustal nucleus in the Fennoscandian Shield. This adds to the growing number of Eoarchean nuclei recognized in Archean terranes around the globe, highlighting the importance of such nuclei in enabling the growth of continental crust. The isotope signatures of the Fennoscandian nucleus correlate with equivalent-aged rocks in Greenland, consistent with a common Eoarchean evolution for Fennoscandia and the North Atlantic craton. 
    more » « less
  6. Abstract High‐resolution records from past interglacial climates help constrain future responses to global warming, yet are rare. Here, we produce seasonally resolved climate records from subarctic‐Canada using micron‐scale measurements of oxygen isotopes (δ18O) in speleothems with apparent annual growth bands from three interglacial periods—Marine Isotope Stages (MIS) 11, 9, and 5e. We find 3‰ lower δ18O values during MIS 11 than MIS 5e, despite MIS 11 likely being warmer. We explore controls on high‐latitude speleothem δ18O and suggest low MIS 11 δ18O values reflect greater contribution of cold‐season precipitation to dripwater from longer annual ground thaw durations. Other potential influences include changes in precipitation source and/or increased fraction of cold‐season precipitation from diminished sea ice in MIS 11. Our study highlights the potential for high‐latitude speleothems to yield detailed isotopic records of Northern Hemisphere interglacial climates beyond the reach of Greenland ice cores and offers a framework for interpreting them. 
    more » « less
  7. Abstract The Duluth Complex is a large mafic intrusive system located in northeastern Minnesota emplaced as part of the 1.1-Ga Midcontinent Rift. Several Fe–Ti oxide-bearing ultramafic intrusions are hosted along the Western Margin of the Duluth Complex, and are discordant bodies present in a variety of geometries, hosted in multiple rock types, and dominated by peridotite, pyroxenite, and semi-massive to massive Fe–Ti oxide rock types. Their origin has been debated, and here we present geochemical evidence and modeling that supports a purely magmatic origin for the Titac and Longnose Fe–Ti oxide-bearing ultramafic intrusions. Ilmenite and titanomagnetite textures indicate a protracted cooling process, and δ34S values of sulfides reveal little assimilation of the footwall Virginia Formation, a fine-grained pelitic unit that contains sulfide-rich bands. We model the crystallization of a hypothetical parental magma composition to the host intrusion of Longnose using Rhyolite-MELTS and demonstrate that the accumulation of Fe–Ti oxides in the discordant intrusions cannot be explained by density-driven segregation of crystallized Fe–Ti oxides. Instead, we show that the development of silicate liquid immiscibility, occurring by the unmixing of the silicate melt into conjugate Si- and Fe-rich melts, can result in the effective segregation and transportation of the Fe-rich melt. The Fe-rich melt is ~2 orders of magnitude less viscous than the Si-rich melt, allowing the Fe-rich melt to be more effectively segregated and transported in the mush regime (crystallinities >50%). This suggests that viscosity, in addition to density, plays a significant role in forming the discordant Fe–Ti oxide-bearing ultramafic intrusions. We propose a genetic model that could also be responsible for the Fe–Ti oxide-rich layers or bands that are hosted within the igneous stratigraphy of mafic intrusions of the Duluth Complex. 
    more » « less
  8. Abstract Detrital zircons from the Jack Hills are the dominant source of Hadean (pre-4000 Ma) terrestrial material available for study today. Values of δ18O in many of these zircons (6.0 to 7.5‰ are above the mantle-equilibrated value. For two decades, these mildly elevated values have been the primary evidence that protoliths of the zircon-forming magmas interacted at low temperature with liquid water before burial and melting, implying that the surface of Earth cooled quickly after core and moon formation, and that habitable conditions for life existed within 250 Myr of the formation of Earth, over 800 Myr before the oldest generally accepted microfossils. These conclusions are based on oxygen isotope analyses of zircon domains with well-defined growth zoning and nearly concordant U-Pb ages within zircon grains with low magnetic susceptibility, which are further inferred to be unaltered by various tests. However, no studies of Jack Hills zircons have directly correlated oxygen isotope ratios and radiation damage, which facilitates alteration in zircon. Several previous studies have selected zircons that show radiation damaged, discordant and/or hydrous domains, and have shown that such altered material is not reliable as a record of igneous composition. In contrast, this study targeted zircons that are interpreted to pristine and not altered, and demonstrates the importance of testing zircons for radiation damage and alteration as part of any geochemical study, regardless of age. This study expands on existing data, and presents the first comprehensive evaluation of δ18O, OH/O, CL imaging, U-Pb concordance and radiation-damage state within Jack Hills zircons. A total of 115 Hadean zircon grains in this study have water contents similar to nominally anhydrous standard reference zircons and are interpreted as pristine. In situ Raman data for band broadening correlated with δ18O analyses document low levels of radiation damage, indicating significant annealing. The present-day effective doses (Deff) are uniformly less than the first percolation point (dose where damage domains, that are isolated at lower damage state, overlap to form a continuous pathway through the crystal, ~2×1015 α-decays/mg, Ewing et al., 2003) and most zircons have Deff<1×1015 α-decays/mg. Modeling of representative alpha-recoil damage and annealing histories indicates that most zircons in this study have remained below the Deff of the first percolation point throughout their history. The δ18O values for these primary zircons include many that are higher than would be equilibrated with the mantle at magmatic temperatures and average 6.32 ± 1.3‰ in the Hadean and 6.26 ± 1.6‰ in the Archean. There is no correlation in our suite of pristine Hadean zircons between δ18O and OH/O, Deff, age, or U-Pb age-concordance. These carefully documented Hadean-age zircons possess low amounts of radiation damage in domains sampled by δ18O analysis, are water-poor. The mildly elevated δ18O values are a primary-magmatic geochemical signature. These results strengthen the conclusion that mildly elevated-δ18O magmas existed during the Hadean, supporting the hypothesis that oceans and a habitable Earth existed before 4300 Ma. 
    more » « less
  9. Abstract The anomalous polymict ureilite Almahata Sitta (AhS) fell in 2008 when asteroid 2008 TC3disintegrated over Sudan and formed a strewn field of disaggregated clasts of various ureilitic and chondritic types. We studied the petrology and oxygen isotope compositions of enstatite meteorite samples from the University of Khartoum (UoK) collection of AhS. In addition, we describe the first bona fide (3.5 mm‐sized) clast of an enstatite chondrite (EC) in a typical polymict ureilite, Northwest Africa (NWA) 10657. We evaluate whether 2008 TC3and typical polymict ureilites have a common origin, and examine implications for the history of enstatite meteorite asteroids in the solar system. Based on mineralogy, mineral compositions, and textures, the seven AhS EC clasts studied comprise one EHa3 (S151), one ELb3 (AhS 1002), two EHb4‐5 (AhS 2012, AhS 26), two EHb5‐6 or possibly impact melt rocks (AhS 609, AhS 41), and one ELb6‐7 (AhS 17), while the EC clast in NWA 10657 is EHa3. Oxygen isotope compositions analyzed for five of these are similar to those of EC from non‐UoK collections of AhS, and within the range of individual EC meteorites. There are no correlations of oxygen isotope composition with chemical group or subgroup. The EC clasts from the UoK collection show the same large range of types as those from non‐UoK collections of AhS. The enstatite achondrite, AhS 60, is a unique type (not known as an individual meteorite) that has also been found among non‐UoK AhS samples. EC are the most abundant non‐ureilitic clasts in AhS but previously were thought to be absent in typical polymict ureilites, necessitating a distinct origin for AhS. The discovery of an EC in NWA 10657 changes this. We argue that the types of materials in AhS and typical polymict ureilites are essentially similar, indicating a common origin. We elaborate on a model in which AhS and typical polymict ureilites formed in the same regolith on a ureilitic daughter body. Most non‐ureilitic clasts are remnants of impactors implanted at ~50–60 Myr after CAI. Differences in abundances can be explained by the stochastic nature of impactor addition. There is no significant difference between the chemical/petrologic types of EC in polymict ureilites and individual EC meteorites. This implies that fragments of the same populations of EC parent bodies were available as impactors at ~50–60 Myr after CAI and recently. This can be explained if materials excavated from various depths on EC bodies at ~50–60 Myr after CAI were reassembled into mixed layers, leaving relatively large bodies intact to survive 4 billion years. Polymict ureilites record a critical timestep in the collisional and dynamical evolution of the solar system, showing that asteroids that may have accreted at distant locations had migrated to within proximity of one another by 50–60 Myr after CAI, and providing constraints on the dynamical processes that could have caused such migrations. 
    more » « less
  10. ABSTRACT Extraterrestrial chrome spinel and chromite extracted from the sedimentary rock record are relicts from coarse micrometeorites and rarely meteorites. They are studied to reconstruct the paleoflux of meteorites to the Earth and the collisional history of the asteroid belt. Minor element concentrations of Ti and V, and oxygen isotopic compositions of these relict minerals were used to classify the meteorite type they stem from, and thus to determine the relative meteorite group abundances through time. While coarse sediment‐dispersed extraterrestrial chrome‐spinel (SEC) grains from ordinary chondrites dominate through the studied time windows in the Phanerozoic, there are exceptions: We have shown that ~467 Ma ago, 1 Ma before the breakup of the L chondrite parent body (LCPB), more than half of the largest (>63 μm diameter) grains were achondritic and originated from differentiated asteroids in contrast to ordinary chondrites which dominated the meteorite flux throughout most of the past 500 Ma. Here, we present a new data set of oxygen isotopic compositions and elemental compositions of 136 grains of a smaller size fraction (32–63 μm) in ~467 Ma old pre‐LCPB limestone from the Lynna River section in western Russia, that was previously studied by elemental analysis. Our study constitutes the most comprehensive oxygen isotopic data set of sediment‐dispersed extraterrestrial chrome spinel to date. We also introduce a Raman spectroscopy‐based method to identify SEC grains and distinguish them from terrestrial chrome spinel with ~97% reliability. We calibrated the Raman method with the established approach using titanium and vanadium concentrations and oxygen isotopic compositions. We find that ordinary chondrites are approximately three times more abundant in the 32–63 μm fraction than achondrites. While abundances of achondrites compared to ordinary chondrites are lower in the 32–63 μm size fraction than in the >63 μm one, achondrites are approximately three times more abundant in the 32–62 μm fraction than they are in the present flux. We find that the sources of SEC grains vary for different grain sizes, mainly as a result of parent body thermal metamorphism. We conclude that the meteorite flux composition ~467 Ma ago ~1 Ma before the breakup of the LCPB was fundamentally different from today and from other time windows studied in the Phanerozoic, but that in contrast to the large size fraction ordinary chondrites dominated the flux in the small size fraction. The high abundance of ordinary chondrites in the studied samples is consistent with the findings based on coarse extraterrestrial chrome‐spinel from other time windows. 
    more » « less