skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2004719

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Drug‐resistant microorganisms cause serious problems in human healthcare, leading to the persistence in infections and poor treatment outcomes from conventional therapy. In this study, a gene‐targeting strategy using microbubble‐controlled nanoparticles is introduced that can effectively eliminate biofilms of methicillin‐resistantStaphylococcus aureus(MRSA) in vivo. Biofilm‐targeting nanoparticles (BTN) capable of delivering oligonucleotides are developed that effectively remove biofilm‐associated bacteria upon controlled delivery with diatom‐based microbubblers (MB). The activity of BTN in silencing key bacterial genes related to MRSA biofilm formation (icaA), bacterial growth (ftsZ), and antimicrobial resistance (mecA), as well as their multi‐targeting ability in vitro is validated. The integration of BTN with MB is next examined, resulting in synergistic effects in biofilm removal and antimicrobial activity in an ex vivo porcine skin model. The therapeutic efficacy is further investigated in vivo in a mouse wound model infected with MRSA biofilm, which showed that MB‐controlled BTN delivery substantially reduced bacterial load and led to the effective elimination of the biofilm. This study underscores the potential of the gene silencing platform with physical enhancement as a promising strategy to combat problems related to biofilms and antibiotic resistance. 
    more » « less
  2. Abstract For patients who have difficulty in mechanical cleaning of dental appliances, a denture cleaner that can remove biofilm with dense extracellular polymeric substances is needed. The purpose of this study is to evaluate the efficacy of diatom complex with active micro-locomotion for removing biofilms from 3D printed dentures. The diatom complex, which is made by doping MnO2nanosheets on diatom biosilica, is mixed with H2O2to generate fine air bubbles continuously. Denture base resin specimens were 3D printed in a roof shape, andPseudomonas aeruginosa(107 CFU/mL) was cultured on those for biofilm formation. Cleaning solutions of phosphate-buffered saline (negative control, NC), 3% H2O2with peracetic acid (positive control, PC), denture cleanser tablet (DCT), 3% H2O2with 2 mg/mL diatom complex M (Melosira, DM), 3% H2O2with 2 mg/mL diatom complex A (Aulacoseira, DA), and DCT with 2 mg/mL DM were prepared and applied. To assess the efficacy of biofilm removal quantitatively, absorbance after cleaning was measured. To evaluate the stability of long-term use, surface roughness, ΔE, surface micro-hardness, and flexural strength of the 3D printed dentures were measured before and after cleaning. Cytotoxicity was evaluated using Cell Counting Kit-8. All statistical analyses were conducted using SPSS for Windows with one-way ANOVA, followed by Scheffe’s test as a post hoc (p < 0.05). The group treated with 3% H2O2with DA demonstrated the lowest absorbance value, followed by the groups treated with 3% H2O2with DM, PC, DCT, DCT + DM, and finally NC. As a result of Scheffe’s test to evaluate the significance of difference between the mean values of each group, statistically significant differences were shown in all groups based on the NC group. The DA and DM groups showed the largest mean difference though there was no significant difference between the two groups. Regarding the evaluation of physical and mechanical properties of the denture base resin, no statistically significant differences were observed before and after cleaning. In the cytotoxicity test, the relative cell count was over 70%, reflecting an absence of cytotoxicity. The diatom complex utilizing active micro-locomotion has effective biofilm removal ability and has a minimal effect in physical and mechanical properties of the substrate with no cytotoxicity. 
    more » « less
  3. Free, publicly-accessible full text available March 1, 2026