skip to main content

Search for: All records

Award ID contains: 2004864

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A growing number of two-dimensional superconductors are being discovered in the family of exfoliated van der Waals materials. Due to small sample volume, the superfluid response of these materials has not been characterized. Here, we use a local magnetic probe to directly measure this key property of the tunable, gate-induced superconducting state in MoS2. We find that the backgate changes the transition temperature non-monotonically whereas the superfluid stiffness at low temperature and the normal state conductivity monotonically increase. In some devices, we find direct signatures in agreement with a Berezinskii-Kosterlitz-Thouless transition, whereas in others we find a broadened onset of the superfluid response. We show that the observed behavior is consistent with disorder playing an important role in determining the properties of superconducting MoS2. Our work demonstrates that magnetic property measurements are within reach for superconducting devices based on exfoliated sheets and reveals that the superfluid response significantly deviates from simple BCS-like behavior.

    more » « less