skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2004937

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Polyacrylamide hydrogels are widely used in biomedical applications due to their tunable mechanical properties and charge neutrality. Our recent tribological investigations of polyacrylamide gels have revealed tunable and pH-dependent friction behavior. To determine the origins of this pH-responsiveness, we prepared polyacrylamide hydrogels with two different initiating chemistries: a reduction–oxidation (redox)-initiated system using ammonium persulfate (APS) andN,N,N′N′-tetramethylethylenediamine (TEMED) and a UV-initiated system with 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959). Hydrogel swelling, mechanical properties, and tribological behavior were investigated in response to solution pH (ranging from ≈ 0.34 to 13.5). For polyacrylamide hydrogels in sliding contact with glass hemispherical probes, friction coefficients decreased fromµ = 0.07 ± 0.02 toµ = 0.002 ± 0.002 (redox-initiated) and fromµ = 0.05 ± 0.03 toµ = 0.003 ± 0.003 (UV-initiated) with increasing solution pH. With hemispherical polytetrafluoroethylene (PTFE) probes, friction coefficients of redox-initiated hydrogels similarly decreased fromµ = 0.06 ± 0.01 toµ = 0.002 ± 0.001 with increasing pH. Raman spectroscopy measurements demonstrated hydrolysis and the conversion of amide groups to carboxylic acid in basic conditions. We therefore propose that the mechanism for pH-responsive friction in polyacrylamide hydrogels may be credited to hydrolysis-driven swelling through the conversion of side chain amide groups into carboxylic groups and/or crosslinker degradation. Our results could assist in the rational design of hydrogel-based tribological pairs for biomedical applications from acidic to alkaline conditions. Graphical abstract 
    more » « less
  2. Free, publicly-accessible full text available January 13, 2026
  3. Here we present a new, compact magnetic tweezers design that enables precise application of a wide range of dynamic forces to soft materials without the need to raise or lower the magnet height above the sample. This is achieved through the controlled rotation of the permanent magnet array with respect to the fixed symmetry axis defined by a custom-built iron yoke. These design improvements increase the portability of the device and can be implemented within existing microscope setups without the need for extensive modification of the sample holders or light path. This device is particularly well-suited to active microrheology measurements using either creep analysis, in which a step force is applied to a micron-sized magnetic particle that is embedded in a complex fluid, or oscillatory microrheology, in which the particle is driven with a periodic waveform of controlled amplitude and frequency. In both cases, the motions of the particle are measured and analyzed to determine the local dynamic mechanical properties of the material. 
    more » « less
  4. null (Ed.)