Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Metal halide perovskite nanocrystals (NCs) have emerged as highly promising light emitting materials for various applications, ranging from perovskite light‐emitting diodes (PeLEDs) to lasers and radiation detectors. While remarkable progress has been achieved in highly efficient and stable green, red, and infrared perovskite NCs, obtaining efficient and stable blue‐emitting perovskite NCs remains a great challenge. Here, a facile synthetic approach for the preparation of blue emitting CsPbBr3nanoplatelets (NPLs) with treatment by an organic sulfate is reported, 2,2‐(ethylenedioxy) bis(ethylammonium) sulfate (EDBESO4), which exhibit remarkably enhanced photoluminescence quantum efficiency (PLQE) and stability as compared to pristine CsPbBr3NPLs coated with oleylamines. The PLQE is improved from ≈28% for pristine CsPbBr3NPLs to 85% for EDBESO4treated CsPbBr3NPLs. Detailed structural characterizations reveal that EDBESO4treatment leads to surface passivation of CsPbBr3NPLs by both EDBE2+and SO42–ions, which helps to prevent the coalescence of NPLs and suppress the degradation of NPLs. A simple proof‐of‐concept device with emission peaked at 462 nm exhibits an external quantum efficiency of 1.77% with a luminance of 691 cd m−2and a half‐lifetime of 20 min, which represents one of the brightest pure blue PeLEDs based on NPLs reported to date.more » « less
-
Despite the impressive development of perovskite light-emitting diodes (PeLEDs), it is still challenging to achieve high-efficiency deep-blue PeLEDs using colloid perovskite quantum dots (PQDs). The efficiency of PQDs with a wavelength below 460 nm, which meets the requirements for deep-blue emission in the Telecommunication Union UHD television standard (ITU REC. 2020), lags far behind those of their sky-blue counterparts. To address this issue, a novel strategy of fast anion-exchange & cation-doping inter-promotion (FAECDIP) is proposed to achieve highly efficient deep-blue PQDs by introducing CaBr2 into the CsPbCl3 PQDs. Owing to the presence of Ca2+, the speed of ion exchange is increased, driven by the smaller cation, Ca2+, improving the preparation efficiency. Additionally, Ca2+ was doped on the surface of PQDs. Based on studies of fast anion-exchange and theoretical calculations, Ca2+ improves the optical performance by decreasing the number of traps and increasing the crystallinity of target PQDs, facilitating the stability of treated films and PeLEDs by enhancing the formation energy of halogen vacancies. Here, a high PLQY of 80.3 % CaBr2-induced CsPb(Cl/Br)3 deep-blue PQDs (~446 nm) was achieved. The correspondent PeLEDs (~447 nm) achieved a superior EQE of 5.88 %, which is the state-of-the-art among the reported deep-blue PeLEDs. Our strategy provides a potential route to achieve deep-blue PeLEDs, which differs from the previous tedious-complex methods.more » « less
-
none (Ed.)There has been much interest in integrating various inorganic nanoparticles (nanoscale colloids) in biology and medicine. However, buildup of a protein corona around the nanoparticles in biological media, driven by nonspecific interactions, remains a major hurdle for the translation of nanomedicine into clinical applications. In this study, we investigate the interactions between gold nanoparticles and serum proteins using a series of dihydrolipoic acid (DHLA)-based ligands. We employed gel electrophoresis combined with UV−vis absorption and dynamic light scattering to correlate protein adsorption with the nature and size of the ligand used. For instance, we found that AuNPs capped with DHLA alone promote nonspecific protein adsorption. In comparison, capping AuNPs with polyethylene glycol- or zwitterion-appended DHLA essentially prevents corona formation, regardless of ligand charge and size. Our results highlight the crucial role of surface chemistry and core material in protein corona formation and offer valuable information for the design of colloidal nanomaterials for biological applications.more » « less
-
Magnetic resonance imaging, MRI, relying on 19F nuclei has attracted much attention, because the isotopes exhibit a high gyromagnetic ratio (comparable to that of protons) and have 100% natural abundance. Furthermore, due to the very low traces of intrinsic fluorine in biological tissues, fluorine labeling allows easy visualization in vivo using 19F-based MRI. However, one of the drawbacks of the available fluorine tracers is their very limited solubility in water. Here, we detail the design and preparation of a set of water-compatible fluorine-rich polymers as contrast agents that can enhance the effectiveness of 19F-based MRI. The agents are synthesized using the nucleophilic addition reaction between poly(isobutylene-alt-maleic anhydride) copolymer and a mixture of amine-appended fluorine groups and polyethylene glycol (PEG) blocks. This allows control over the polymer architecture and stoichiometry, resulting in good affinity to water solutions. We further investigate the effects of introducing additional segmental mobility to the fluorine moieties in the polymer, by inserting a PEG linker between the moieties and the polymer backbone. We find that controlling the polymer stoichiometry and introducing additional segmental mobility enhance the NMR signals and narrow the peak profile. In particular, we assess the impact of the PEG linker on T2* and T1 relaxation times, using a series of gradient-recalled echo images with varying echo times, TE, or recovery time, TR, respectively. We find that for equivalent concentrations, the PEG linker greatly increases T2*, while maintaining high T1 values, as compared to polymers without this linker. Phantom images collected from these compounds show bright signals over a background with high intensities.more » « less
-
Osiński, Marek; Kanaras, Antonios G. (Ed.)N-heterocyclic carbenes (NHCs) have attracted tremendous attention over the past decade, as it is expected to form strong coordination to transition metal complexes and surfaces. Here, we investigate the interactions between colloidal gold nanoparticles (AuNPs), or luminescent quantum dots (QDs) and a multidentate NHC-based polymer ligand. The ligand design relies on the nucleophilic addition reaction between several NHC anchoring groups, short polyethylene glycol (PEG) blocks, and a polymer chain. We find that such NHC-decorated ligands rapidly coordinate onto both sets of nanocrystals, which is attributed to the inherent σ-donating nature (soft Lewis base) of NHC groups combined with the soft Lewis acidic character of nanocrystal surfaces. We combine NMR spectroscopy, fluorescence spectroscopy, high-resolution transmission electron microscopy and dynamic light scattering to characterize the NHCstabilized nanocrystals and gain insights into the nature of the binding interactions. In particular, we find that the newly coated nanocrystals exhibit long-term colloidal stability over a broad range of conditions with no sign of degradation or aggregation build up, while preserving their photophysical properties, for at least one year of storage.more » « less
An official website of the United States government
