Domain walls in fractional quantum Hall ferromagnets are gapless helical one-dimensional channels formed at the boundaries of topologically distinct quantum Hall (QH) liquids. Naïvely, these helical domain walls (hDWs) constitute two counter-propagating chiral states with opposite spins. Coupled to an s-wave superconductor, helical channels are expected to lead to topological superconductivity with high order non-Abelian excitations1–3. Here we investigate transport properties of hDWs in the
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract ν = 2/3 fractional QH regime. Experimentally we found that current carried by hDWs is substantially smaller than the prediction of the naïve model. Luttinger liquid theory of the system reveals redistribution of currents between quasiparticle charge, spin and neutral modes, and predicts the reduction of the hDW current. Inclusion of spin-non-conserving tunneling processes reconciles theory with experiment. The theory confirms emergence of spin modes required for the formation of fractional topological superconductivity. -
Abstract The suggestion that non-reciprocal critical current (NRC) may be an intrinsic property of non-centrosymmetric superconductors has generated renewed theoretical and experimental interest motivated by an analogy with the non-reciprocal resistivity due to the magnetochiral effect in uniform materials with broken spatial and time-reversal symmetry. Theoretically it has been understood that terms linear in the Cooper pair momentum do not contribute to NRC, although the role of higher-order terms remains unclear. In this work we show that critical current non-reciprocity is a generic property of multilayered superconductor structures in the presence of magnetic field-generated diamagnetic currents. In the regime of an intermediate coupling between the layers, the Josephson vortices are predicted to form at high fields and currents. Experimentally, we report the observation of NRC in nanowires fabricated from InAs/Al heterostructures. The effect is independent of the crystallographic orientation of the wire, ruling out an intrinsic origin of NRC. Non-monotonic NRC evolution with magnetic field is consistent with the generation of diamagnetic currents and formation of the Josephson vortices. This extrinsic NRC mechanism can be used to design novel devices for superconducting circuits.more » « lessFree, publicly-accessible full text available December 1, 2024
-
Spatial confinement of electronic topological surface states (TSSs) in topological insulators poses a formidable challenge because TSSs are protected by time-reversal symmetry. In previous works formation of a gap in the electronic spectrum of TSSs has been successfully demonstrated in topological insulator/magnetic material heterostructures, where ferromagnetic exchange interactions locally lift the time-reversal symmetry. Here we report experimental evidence of exchange interaction between a topological insulator Bi2Se3 and a magnetic insulator EuSe. Spin-polarized neutron reflectometry reveals a reduction of the in-plane magnetic susceptibility within a 2 nm interfacial layer of EuSe, and the combination of superconducting quantum interference device (SQUID) magnetometry and Hall measurements points to the formation of an interfacial layer with a suppressed net magnetic moment. This suppressed magnetization survives up to temperatures five times higher than the Néel temperature of EuSe. Its origin is attributed to the formation of an interfacial antiferromagnetic state. Abrupt resistance changes observed in high magnetic fields are consistent with antiferromagnetic domain reconstruction affecting transport in a TSS via exchange coupling. The high-temperature local control of TSSs with zero net magnetization unlocks new opportunities for the design of electronic, spintronic, and quantum computation devices, ranging from quantization of Hall conductance in zero fields to spatial localization of non-Abelian excitations in superconducting topological qubits.more » « lessFree, publicly-accessible full text available November 1, 2024