skip to main content


Search for: All records

Award ID contains: 2005430

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper we propose a novel conditional generative adversarial network (cGAN) architecture, called S2M-Net, to holistically synthesize realistic three-party conversational animations based on acoustic speech input together with speaker marking (i.e., the speak- ing time of each interlocutor). Specifically, based on a pre-collected three-party conversational motion dataset, we design and train the S2M-Net for three-party conversational animation synthesis. In the architecture, a generator contains a LSTM encoder to encode a sequence of acoustic speech features to a latent vector that is further fed into a transform unit to transform the latent vector into a gesture kinematics space. Then, the output of this transform unit is fed into a LSTM decoder to generate corresponding three-party conversational gesture kinematics. Meanwhile, a discriminator is implemented to check whether an input sequence of three-party conversational gesture kinematics is real or fake. To evaluate our method, besides quantitative and qualitative evaluations, we also conducted paired comparison user studies to compare it with the state of the art. 
    more » « less
  2. Simulating realistic butterfly motion has been a widely-known challenging problem in computer animation. Arguably, one of its main reasons is the difficulty of acquiring accurate flight motion of butterflies. In this paper we propose a practical yet effective, optical marker-based approach to capture and process the detailed motion of a flying butterfly. Specifically, we first capture the trajectories of the wings and thorax of a flying butterfly using optical marker based motion tracking. After that, our method automatically fills the positions of missing markers by exploiting the continuity and relevance of neighboring frames, and improves the quality of the captured motion via noise filtering with optimized parameter settings. Through comparisons with existing motion processing methods, we demonstrate the effectiveness of our approach to obtain accurate flight motions of butterflies. Furthermore, we created and will release a first-of-its-kind butterfly motion capture dataset to research community. 
    more » « less
  3. Recovering 3D face models from in-the-wild face images has numerous potential applications. However, properly modeling complex lighting effects in reality, including specular lighting, shadows, and occlusions, from a single in-the-wild face image is still considered as a widely open research challenge. In this paper, we propose a convolutional neural network based framework to regress the face model from a single image in the wild. The outputted face model includes dense 3D shape, head pose, expression, diffuse albedo, specular albedo, and the corresponding lighting conditions. Our approach uses novel hybrid loss functions to disentangle face shape identities, expressions, poses, albedos, and lighting. Besides a carefully designed ablation study, we also conduct direct comparison experiments to show that our method can outperform state-of-art methods both quantitatively and qualitatively. 
    more » « less
  4. Butterflies are not only ubiquitous around the world but are also widely known for inspiring thrill resonance, with their elegant and peculiar flights. However, realistically modeling and simulating butterfly flights—in particular, for real-time graphics and animation applications—remains an under-explored problem. In this article, we propose an efficient and practical model to simulate butterfly flights. We first model a butterfly with parametric maneuvering functions, including wing-abdomen interaction. Then, we simulate dynamic maneuvering control of the butterfly through our force-based model, which includes both the aerodynamics force and the vortex force. Through many simulation experiments and comparisons, we demonstrate that our method can efficiently simulate realistic butterfly flight motions in various real-world settings. 
    more » « less
  5. Bottoni, Paolo ; Panizzi, Emanuele (Ed.)
    Many questions regarding single-hand text entry on modern smartphones (in particular, large-screen smartphones) remain under-explored, such as, (i) will the existing prevailing single-handed keyboards fit for large-screen smartphone users? and (ii) will individual customization improve single-handed keyboard performance? In this paper we study single-handed typing behaviors on several representative keyboards on large-screen mobile devices.We found that, (i) the user-adaptable-shape curved keyboard performs best among all the studied keyboards; (ii) users’ familiarity with the Qwerty layout plays a significant role at the beginning, but after several sessions of training, the user-adaptable curved keyboard can have the best learning curve and performs best; (iii) generally the statistical decoding algorithms via spatial and language models can well handle the input noise from single-handed typing. 
    more » « less
  6. Abstract In this article, we present a live speech-driven, avatar-mediated, three-party telepresence system, through which three distant users, embodied as avatars in a shared 3D virtual world, can perform natural three-party telepresence that does not require tracking devices. Based on live speech input from three users, this system can real-time generate the corresponding conversational motions of all the avatars, including head motion, eye motion, lip movement, torso motion, and hand gesture. All motions are generated automatically at each user side based on live speech input, and a cloud server is utilized to transmit and synchronize motion and speech among different users. We conduct a formal user study to evaluate the usability and effectiveness of the system by comparing it with a well-known online virtual world, Second Life, and a widely-used online teleconferencing system, Skype. The user study results indicate our system can provide a measurably better telepresence user experience than the two widely-used methods. 
    more » « less