Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We introduce the notions of static regular of type (I) and type (II) and show that they are sufficient conditions for local well-posedness of solving asymptotically flat, static vacuum metrics with prescribed Bartnik boundary data. We then show that hypersurfaces in a very general open and dense family of hypersurfaces are static regular of type (II). As applications, we confirm Bartnik’s static vacuum extension conjecture for a large class of Bartnik boundary data, including those that can be far from Euclidean and have large ADM masses, and give many new examples of static vacuum metrics with intriguing geometry.more » « less
-
We introduce the concept of improvability of the dominant energy scalar, and we derive strong consequences of non-improvability. In particular, we prove that a non-improvable initial data set without local symmetries must sit inside a null perfect fluid spacetime carrying a global Killing vector field. We also show that the dominant energy scalar is always almost improvable in a precise sense. Using these main results, we provide a characterization of Bartnik mass minimizing initial data sets which makes substantial progress toward Bartnik’s stationary conjecture. Along the way we observe that in dimensions greater than eight there exist pp-wave counterexamples (without the optimal decay rate for asymptotically flatness) to the equality case of the spacetime positive mass theorem. As a consequence, we find counterexamples to Bartnik’s stationary and strict positivity conjectures in those dimensions.more » « less
-
We study scalar curvature deformation for asymptotically locally hyperbolic (ALH) manifolds with nonempty compact boundary. We show that the scalar curvature map is locally surjective among either (1) the space of metrics that coincide exponentially toward the boundary, or (2) the space of metrics with arbitrarily prescribed nearby Bartnik boundary data. Using those results, we characterize the ALH manifolds that minimize the Wang-Chruściel-Herzlich mass integrals in great generality and establish the rigidity of the positive mass theorems.more » « less
-
In our prior work toward Bartnik’s static vacuum extension conjecture for near Euclidean boundary data, we establish a sufficient condition, called static regular, and confirm that large classes of boundary hypersurfaces are static regular. In this paper, we further improve some of those prior results. Specifically, we show that any hypersurface in an open and dense subfamily of a certain general smooth one-sided family of hypersurfaces (not necessarily a foliation) is static regular. The proof uses some of our new arguments motivated from studying the conjecture for boundary data near an arbitrary static vacuum metric.more » « less
An official website of the United States government
