Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We exhibit infinitely many ribbon knots, each of which bounds infinitely many pairwise nonisotopic ribbon disks whose exteriors are diffeomorphic. This family provides a positive answer to a stronger version of an old question of Hitt and Sumners. The examples arise from our main result: a classification of fibered, homotopy‐ribbon disks for each generalized square knot up to isotopy. Precisely, we show that each generalized square knot bounds infinitely many pairwise nonisotopic fibered, homotopy‐ribbon disks, all of whose exteriors are diffeomorphic. When , we prove further that infinitely many of these disks are also ribbon; whether the disks are always ribbon is an open problem.more » « lessFree, publicly-accessible full text available December 1, 2026
-
A well-known algorithm for unknotting knots involves traversing a knot diagram and changing each crossing that is first encountered from below. The minimal number of crossings changed in this way across all diagrams for a knot is called the ascending number of the knot. The ascending number is bounded below by the unknotting number. We show that for knots obtained as the closure of a positive braid, the ascending number equals the unknotting number. We also present data indicating that a similar result may hold for positive knots. We use this data to examine which low-crossing knots have the property that their ascending number is realized in a minimal crossing diagram, showing that there are at most 5 hyperbolic, alternating knots with at most 12 crossings with this property.more » « lessFree, publicly-accessible full text available January 1, 2027
-
The ribbon number of a knot is the minimum number of ribbon singularities among all ribbon disks bounded by that knot. In this paper, we build on the systematic treatment of this knot invariant initiated in recent work of Friedl, Misev, and Zupan. We show that the set of Alexander polynomials of knots with ribbon number at most four contains 56 polynomials, and we use this set to compute the ribbon numbers for many 12-crossing knots. We also study higher-genus ribbon numbers of knots, presenting some examples that exhibit interesting behavior and establishing that the success of the Alexander polynomial at controlling genus-0 ribbon numbers does not extend to higher genera.more » « lessFree, publicly-accessible full text available November 1, 2026
An official website of the United States government
