Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
We study the problem of weakly private information retrieval (PIR) when there is heterogeneity in servers’ trustfulness under the maximal leakage (Max-L) metric. A user wishes to retrieve a desired message from N non-colluding servers efficiently, such that the identity of the desired message is not leaked in a significant manner; however, some servers can be more trustworthy than others. We propose a code construction for this setting and optimize the probability distribution for this construction. It is shown that the optimal probability allocation for the proposed scheme essentially separates the delivery patterns into two parts: a completely private part that has the same download overhead as the capacity-achieving PIR code, and a non-private part that allows complete privacy leakage but has no download overhead by downloading only from the most trustful server. The optimal solution is established through a sophisticated analysis of the underlying convex optimization problem, and a reduction between the homogeneous setting and the heterogeneous setting.more » « less
-
We consider the storage–retrieval rate trade-off in private information retrieval (PIR) systems using a Shannon-theoretic approach. Our focus is mostly on the canonical two-message two-database case, for which a coding scheme based on random codebook generation and the binning technique is proposed. This coding scheme reveals a hidden connection between PIR and the classic multiple description source coding problem. We first show that when the retrieval rate is kept optimal, the proposed non-linear scheme can achieve better performance over any linear scheme. Moreover, a non-trivial storage-retrieval rate trade-off can be achieved beyond space-sharing between this extreme point and the other optimal extreme point, achieved by the retrieve-everything strategy. We further show that with a method akin to the expurgation technique, one can extract a zero-error PIR code from the random code. Outer bounds are also studied and compared to establish the superiority of the non-linear codes over linear codes.more » « less
-
null (Ed.)In the conventional robust T -colluding private information retrieval (PIR) system, the user needs to retrieve one of the possible messages while keeping the identity of the requested message private from any T colluding servers. Motivated by the possible heterogeneous privacy requirements for different messages, we consider the ( N,T1:K1,T2:K2 ) two-level PIR system, where K1 messages need to be retrieved privately against T1 colluding servers, and all the messages need to be retrieved privately against T2 colluding servers where T2≤T1 . We obtain a lower bound to the capacity by proposing a novel coding scheme, namely the non-uniform successive cancellation scheme. A capacity upper bound is also derived. The gap between the upper bound and the lower bound is analyzed, and shown to vanish when T1=T2 .more » « less
An official website of the United States government
