skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2007251

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Our social identities determine how we interact and engage with the world surrounding us. In online settings, individuals can make these identities explicit by including them in their public biography, possibly signaling a change in what is important to them and how they should be viewed. While there is evidence suggesting the impact of intentional identity disclosure in online social platforms, its actual effect on engagement activities at the user level has yet to be explored. Here, we perform the first large-scale study on Twitter that examines behavioral changes following identity disclosure on Twitter profiles. Combining social networks with methods from natural language processing and quasi-experimental analyses, we discover that after disclosing an identity on their profiles, users (1) tweet and retweet more in a way that aligns with their respective identities, and (2) connect more with users that disclose similar identities. We also examine whether disclosing the identity increases the chance of being targeted for offensive comments and find that in fact (3) the combined effect of disclosing identity via both tweets and profiles is associated with a reduced number of offensive replies from others. Our findings highlight that the decision to disclose one’s identity in online spaces can lead to substantial changes in how they express themselves or forge connections, with a lesser degree of negative consequences than anticipated. 
    more » « less
  2. Free, publicly-accessible full text available December 1, 2025
  3. Individuals experiencing unexpected distressing events, shocks, often rely on their social network for support. While prior work has shown how social networks respond to shocks, these studies usually treat all ties equally, despite differences in the support provided by different social relationships. Here, we conduct a computational analysis on Twitter that examines how responses to online shocks differ by the relationship type of a user dyad. We introduce a new dataset of over 13K instances of individuals' self-reporting shock events on Twitter and construct networks of relationship-labeled dyadic interactions around these events. By examining behaviors across 110K replies to shocked users in a pseudo-causal analysis, we demonstrate relationship-specific patterns in response levels and topic shifts. We also show that while well-established social dimensions of closeness such as tie strength and structural embeddedness contribute to shock responsiveness, the degree of impact is highly dependent on relationship and shock types. Our findings indicate that social relationships contain highly distinctive characteristics in network interactions, and that relationship-specific behaviors in online shock responses are unique from those of offline settings. 
    more » « less
  4. Social media enables the rapid spread of many kinds of information, from pop culture memes to social movements. However, little is known about how information crosses linguistic boundaries. We apply causal inference techniques on the European Twitter network to quantify the structural role and communication influence of multilingual users in cross-lingual information exchange. Overall, multilinguals play an essential role; posting in multiple languages increases betweenness centrality by 13%, and having a multilingual network neighbor increases monolinguals’ odds of sharing domains and hashtags from another language 16-fold and 4-fold, respectively. We further show that multilinguals have a greater impact on diffusing information is less accessible to their monolingual compatriots, such as information from far-away countries and content about regional politics, nascent social movements, and job opportunities. By highlighting information exchange across borders, this work sheds light on a crucial component of how information and ideas spread around the world. 
    more » « less
  5. Topics in conversations depend in part on the type of interpersonal relationship between speakers, such as friendship, kinship, or romance. Identifying these relationships can provide a rich description of how individuals communicate and reveal how relationships influence the way people share information. Using a dataset of more than 9.6M dyads of Twitter users, we show how relationship types influence language use, topic diversity, communication frequencies, and diurnal patterns of conversations. These differences can be used to predict the relationship between two users, with the best predictive model achieving a macro F1 score of 0.70. We also demonstrate how relationship types influence communication dynamics through the task of predicting future retweets. Adding relationships as a feature to a strong baseline model increases the F1 and recall by 1% and 2%. The results of this study suggest relationship types have the potential to provide new insights into how communication and information diffusion occur in social networks. 
    more » « less
  6. null (Ed.)
    Topics in conversations depend in part on the type of interpersonal relationship between speakers, such as friendship, kinship, or romance. Identifying these relationships can provide a rich description of how individuals communicate and reveal how relationships influence the way people share information. Using a dataset of more than 9.6M dyads of Twitter users, we show how relationship types influence language use, topic diversity, communication frequencies, and diurnal patterns of conversations. These differences can be used to predict the relationship between two users, with the best predictive model achieving a macro F1 score of 0.70. We also demonstrate how relationship types influence communication dynamics through the task of predicting future retweets. Adding relationships as a feature to a strong baseline model increases the F1 and recall by 1% and 2%. The results of this study suggest relationship types have the potential to provide new insights into how communication and information diffusion occur in social networks. 
    more » « less
  7. Online conversations can go in many directions: some turn out poorly due to antisocial behavior, while others turn out positively to the benefit of all. Research on improving online spaces has focused primarily on detecting and reducing antisocial behavior. Yet we know little about positive outcomes in online conversations and how to increase them—is a prosocial outcome simply the lack of antisocial behavior or something more? Here, we examine how conversational features lead to prosocial outcomes within online discussions. We introduce a series of new theory-inspired metrics to define prosocial outcomes such as mentoring and esteem enhancement. Using a corpus of 26M Reddit conversations, we show that these outcomes can be forecasted from the initial comment of an online conversation, with the best model providing a relative 24% improvement over human forecasting performance at ranking conversations for predicted outcome. Our results indicate that platforms can use these early cues in their algorithmic ranking of early conversations to prioritize better outcomes. 
    more » « less
  8. null (Ed.)
    Intimacy is a fundamental aspect of how we relate to others in social settings. Language encodes the social information of intimacy through both topics and other more subtle cues (such as linguistic hedging and swearing). Here, we introduce a new computational framework for studying expressions of the intimacy in language with an accompanying dataset and deep learning model for accurately predicting the intimacy level of questions (Pearson r = 0.87). Through analyzing a dataset of 80.5M questions across social media, books, and films, we show that individuals employ interpersonal pragmatic moves in their language to align their intimacy with social settings. Then, in three studies, we further demonstrate how individuals modulate their intimacy to match social norms around gender, social distance, and audience, each validating key findings from studies in social psychology. Our work demonstrates that intimacy is a pervasive and impactful social dimension of language. 
    more » « less