Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Worst-case input generation aims to automatically generate inputs that exhibit the worst-case performance of programs. It has several applications, and can, for example, detect vulnerabilities to denial-of-service (DoS) attacks. However, it is non-trivial to generate worst-case inputs for concurrent programs, particularly for resources like memory where the peak cost depends on how processes are scheduled. This article presents the first sound worst-case input generation algorithm for concurrent programs under non-monotone resource metrics like memory. The key insight is to leverage resource-annotated session types and symbolic execution. Session types describe communication protocols on channels in process calculi. Equipped with resource annotations, resource-annotated session types not only encode cost bounds but also indicate how many resources can be reused and transferred between processes. This information is critical for identifying a worst-case execution path during symbolic execution. The algorithm is sound: if it returns any input, it is guaranteed to be a valid worst-case input. The algorithm is also relatively complete: as long as resource-annotated session types are sufficiently expressive and the background theory for SMT solving is decidable, a worst-case input is guaranteed to be returned. A simple case study of a web server's memory usage demonstrates the utility of the worst-case input generation algorithm.more » « lessFree, publicly-accessible full text available December 24, 2025
-
Probabilistic programming languages (PPLs) provide language support for expressing flexible probabilistic models and solving Bayesian inference problems. PPLs withprogrammable inferencemake it possible for users to obtain improved results by customizing inference engines usingguideprograms that are tailored to a correspondingmodelprogram. However, errors in guide programs can compromise the statistical soundness of the inference. This article introduces a novel coroutine-based framework for verifying the correctness of user-written guide programs for a broad class of Markov chain Monte Carlo (MCMC) inference algorithms. Our approach rests on a novel type system for describing communication protocols between a model program and a sequence of guides that each update only a subset of random variables. We prove that, by translating guide types to context-free processes with finite norms, it is possible to check structural type equality between models and guides in polynomial time. This connection gives rise to an efficienttype-inference algorithmfor probabilistic programs with flexible constructs such as general recursion and branching. We also contribute acoverage-checking algorithmthat verifies the support of sequentially composed guide programs agrees with that of the model program, which is a key soundness condition for MCMC inference with multiple guides. Evaluations on diverse benchmarks show that our type-inference and coverage-checking algorithms efficiently infer types and detect sound and unsound guides for programs that existing static analyses cannot handle.more » « less
-
There are two approaches to automatically deriving symbolic worst-case resource bounds for programs: static analysis of the source code and data-driven analysis of cost measurements obtained by running the program. Static resource analysis is usually sound but incomplete. Data-driven analysis can always return a result, but its lack of robustness often leads to unsound results. This paper presents the design, implementation, and empirical evaluation of hybrid resource bound analyses that tightly integrate static analysis and data-driven analysis. The static analysis part builds on automatic amortized resource analysis (AARA), a state-of-the-art type-based resource analysis method that performs cost bound inference using linear optimization. The data-driven part is rooted in novel Bayesian modeling and inference techniques that improve upon previous data-driven analysis methods by reporting an entire probability distribution over likely resource cost bounds. A key innovation is a new type inference system calledHybrid AARAthat coherently integrates Bayesian inference into conventional AARA, combining the strengths of both approaches. Hybrid AARA is proven to be statistically sound under standard assumptions on the runtime cost data. An experimental evaluation on a challenging set of benchmarks shows that Hybrid AARA (i) effectively mitigates the incompleteness of purely static resource analysis; and (ii) is more accurate and robust than purely data-driven resource analysis.more » « less
-
Motivated by the increasing importance of general-purpose Graphic Processing Units (GPGPU) programming, exemplified by NVIDIA’s CUDA framework, as well as the difficulty, especially for novice programmers, of reasoning about performance in GPGPU kernels, we introduce a novel quantitative program logic for CUDA kernels. The logic allows programmers to reason about both functional correctness and resource usage of CUDA kernels, paying particular attention to a set of common but CUDA-specific performance bottlenecks: warp divergences, uncoalesced memory accesses, and bank conflicts. The logic is proved sound with respect to a novel operational cost semantics for CUDA kernels. The semantics, logic, and soundness proofs are formalized in Coq. An inference algorithm based on LP solving automatically synthesizes symbolic resource bounds by generating derivations in the logic. This algorithm is the basis of RaCUDA, an end-to-end resource-analysis tool for kernels, which has been implemented using an existing resource-analysis tool for imperative programs. An experimental evaluation on a suite of benchmarks shows that the analysis is effective in aiding the detection of performance bugs in CUDA kernels.more » « less
-
Parallel programs are frequently modeled asdependencyorcostgraphs, which can be used to detect various bugs, or simply to visualize the parallel structure of the code. However, such graphs reflect just one particular execution and are typically constructed in apost-hocmanner.Graph types, which were introduced recently to mitigate this problem, can be assigned statically to a program by a type system and compactly represent the family of all graphs that could result from the program. Unfortunately, prior work is restricted in its treatment offutures, an increasingly common and especially dynamic form of parallelism. In short, each instance of a future must be statically paired with a vertex name. Previously, this led to the restriction that futures could not be placed in collections or be used to construct data structures. Doing so is not a niche exercise: such structures form the basis of numerous algorithms that use forms of pipelining to achieve performance not attainable without futures. All but the most limited of these examples are out of reach of prior graph type systems. In this paper, we propose a graph type system that allows for almost arbitrary combinations of futures and recursive data types. We do so by indexing datatypes with a type-levelvertex structure, a codata structure that supplies unique vertex names to the futures in a data structure. We prove the soundness of the system in a parallel core calculus annotated with vertex structures and associated operations. Although the calculus is annotated, this is merely for convenience in defining the type system. We prove that it is possible to annotate arbitrary recursive types with vertex structures, and show using a prototype inference engine that these annotations can be inferred from OCaml-like source code for several complex parallel algorithms.more » « less
-
Session types guarantee that message-passing processes adhere to predefined communication protocols. Prior work on session types has focused on deterministic languages but many message-passing systems, such as Markov chains and randomized distributed algorithms, are probabilistic. To implement and analyze such systems, this article develops the meta theory of probabilistic session types with an application focus on automatic expected resource analysis. Probabilistic session types describe probability distributions over messages and are a conservative extension of intuitionistic (binary) session types. To send on a probabilistic channel, processes have to utilize internal randomness from a probabilistic branching or external randomness from receiving on a probabilistic channel. The analysis for expected resource bounds is smoothly integrated with the type system and is a variant of automatic amortized resource analysis. Type inference relies on linear constraint solving to automatically derive symbolic bounds for various cost metrics. The technical contributions include the meta theory that is based on a novel nested multiverse semantics and a type-reconstruction algorithm that allows flexible mixing of different sources of randomness without burdening the programmer with complex type annotations. The type system has been implemented in the language NomosPro with linear-time type checking. Experiments demonstrate that NomosPro is applicable in different domains such as cost analysis of randomized distributed algorithms, analysis of Markov chains, probabilistic analysis of amortized data structures and digital contracts. NomosPro is also shown to be scalable by (i) implementing two broadcast and a bounded retransmission protocol where messages are dropped with a fixed probability, and (ii) verifying the limiting distribution of a Markov chain with 64 states and 420 transitions.more » « less
-
This article gives an overview of automatic amortized resource analysis (AARA), a technique for inferring symbolic resource bounds for programs at compile time. AARA has been introduced by Hofmann and Jost in 2003 as a type system for deriving linear worst-case bounds on the heap-space consumption of first-order functional programs with eager evaluation strategy. Since then AARA has been the subject of dozens of research articles, which extended the analysis to different resource metrics, other evaluation strategies, non-linear bounds, and additional language features. All these works preserved the defining characteristics of the original paper: local inference rules, which reduce bound inference to numeric (usually linear) optimization; a soundness proof with respect to an operational cost semantics; and the support of amortized analysis with the potential method.more » « less
-
Many algorithms for analyzing parallel programs, for example to detect deadlocks or data races or to calculate the execution cost, are based on a model variously known as a cost graph, computation graph or dependency graph, which captures the parallel structure of threads in a program. In modern parallel programs, computation graphs are highly dynamic and depend greatly on the program inputs and execution details. As such, most analyses that use these graphs are either dynamic analyses or are specialized static analyses that gather a subset of dependency information for a specific purpose. This paper introduces graph types, which compactly represent all of the graphs that could arise from program execution. Graph types are inferred from a parallel program using a graph type system and inference algorithm, which we present drawing on ideas from Hindley-Milner type inference, affine logic and region type systems. We have implemented the inference algorithm over a subset of OCaml, extended with parallelism primitives, and we demonstrate how graph types can be used to accelerate the development of new graph-based static analyses by presenting proof-of-concept analyses for deadlock detection and cost analysis.more » « less
-
General-purpose programming on GPUs (GPGPU) is becoming increasingly in vogue as applications such as machine learning and scientific computing demand high throughput in vector-parallel applications. NVIDIA's CUDA toolkit seeks to make GPGPU programming accessible by allowing programmers to write GPU functions, called kernels, in a small extension of C/C++. However, due to CUDA's complex execution model, the performance characteristics of CUDA kernels are difficult to predict, especially for novice programmers. This paper introduces a novel quantitative program logic for CUDA kernels, which allows programmers to reason about both functional correctness and resource usage of CUDA kernels, paying particular attention to a set of common but CUDA-specific performance bottlenecks. The logic is proved sound with respect to a novel operational cost semantics for CUDA kernels. The semantics, logic and soundness proofs are formalized in Coq. An inference algorithm based on LP solving automatically synthesizes symbolic resource bounds by generating derivations in the logic. This algorithm is the basis of RaCuda, an end-to-end resource-analysis tool for kernels, which has been implemented using an existing resource-analysis tool for imperative programs. An experimental evaluation on a suite of CUDA benchmarks shows that the analysis is effective in aiding the detection of performance bugs in CUDA kernels.more » « less
An official website of the United States government
