skip to main content


Search for: All records

Award ID contains: 2007936

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The groundbreaking image of the black hole at the center of the M87 galaxy has raised questions at the intersection of observational astronomy and black hole physics. How well can the radius of a black hole shadow be measured, and can this measurement be used to distinguish general relativity from other theories of gravity? We explore these questions using a simple spherical flow model in general relativity, scalar Gauss–Bonnet gravity, and the Rezzolla and Zhidenko parameterized metric. We assume an optically thin plasma with power-law emissivity in radius. Along the way we present a generalized Bondi flow, as well as a piecewise analytic model for the brightness profile of a cold inflow. We use the second moment of a synthetic image as a proxy for EHT observables and compute the ratio of the second moment to the radius of the black hole shadow. We show that corrections to this ratio from modifications to general relativity are subdominant compared to corrections to the critical impact parameter, and we argue that this is generally true. In our simplified model the astrophysical parameter uncertainty dominates the gravity theory parameter uncertainty, underlining the importance of understanding the accretion model if EHT is to be used to successfully test theories of gravity.

     
    more » « less
  2. Abstract

    The Event Horizon Telescope (EHT) has released analyses of reconstructed images of horizon-scale millimeter emission near the supermassive black hole at the center of the M87 galaxy. Parts of the analyses made use of a large library of synthetic black hole images and spectra, which were produced using numerical general relativistic magnetohydrodynamics fluid simulations and polarized ray tracing. In this article, we describe thePATOKApipeline, which was used to generate the Illinois contribution to the EHT simulation library. We begin by describing the relevant accretion systems and radiative processes. We then describe the details of the three numerical codes we use,iharm,ipole, andigrmonty, paying particular attention to differences between the current generation of the codes and the originally published versions. Finally, we provide a brief overview of simulated data as produced byPATOKAand conclude with a discussion of limitations and future directions.

     
    more » « less