Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
We describe a system called Qr-Hint that, given a (correct) target query Q* and a (wrong) working query Q, both expressed in SQL, provides actionable hints for the user to fix the working query so that it becomes semantically equivalent to the target. It is particularly useful in an educational setting, where novices can receive help from Qr-Hint without requiring extensive personal tutoring. Since there are many different ways to write a correct query, we do not want to base our hints completely on how Q* is written; instead, starting with the user's own working query, Qr-Hint purposefully guides the user through a sequence of steps that provably lead to a correct query, which will be equivalent to Q* but may still look quite different from it. Ideally, we would like Qr-Hint's hints to lead to the smallest possible corrections to Q. However, optimality is not always achievable in this case due to some foundational hurdles such as the undecidability of SQL query equivalence and the complexity of logic minimization. Nonetheless, by carefully decomposing and formulating the problems and developing principled solutions, we are able to provide provably correct and locally optimal hints through Qr-Hint. We show the effectiveness of Qr-Hint through quality and performance experiments as well as a user study in an educational setting.more » « less
-
Cormode, Graham; Shekelyan, Michael (Ed.)Data analytics skills have become an indispensable part of any education that seeks to prepare its students for the modern workforce. Essential in this skill set is the ability to work with structured relational data. Relational queries are based on logic and may be declarative in nature, posing new challenges to novices and students. Manual teaching resources being limited and enrollment growing rapidly, automated tools that help students debug queries and explain errors are potential game-changers in database education. We present a suite of tools built on the foundations of database theory that has been used by over 1600 students in database classes at Duke University, showcasing a high-impact application of database theory in database education.more » « less
-
Employing Differential Privacy (DP), the state-of-the-art privacy standard, to answer aggregate database queries poses new challenges for users to understand the trends and anomalies observed in the query results: Is the unexpected answer due to the data itself, or is it due to the extra noise that must be added to preserve DP? We propose to demonstrate DPXPlain, the first system for explaining group-by aggregate query answers with DP. DPXPlain allows users to compare values of two groups and receive a validity check, and further provides an explanation table with an interactive visualization, containing the approximately 'top-k' explanation predicates along with their relative influences and ranks in the form of confidence intervals, while guaranteeing DP in all steps.more » « less
An official website of the United States government
