skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2008241

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 16, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Emek, Y (Ed.)
    SIROCCO 2024, LNCS 14662, pp. 420-437, 2024. 
    more » « less
  4. Azar, Yossi (Ed.)
    A data-oblivious algorithm is an algorithm whose memory access pattern is independent of the input values. We initiate the study of parallel data oblivious algorithms on realistic multicores, best captured by the binary fork-join model of computation. We present a data-oblivious CREW binary fork-join sorting algorithm with optimal total work and optimal (cache-oblivious) cache complexity, and in O(łog n łog łog n) span (i.e., parallel time); these bounds match the best-known bounds for binary fork-join cache-efficient insecure algorithms. Using our sorting algorithm as a core primitive, we show how to data-obliviously simulate general PRAM algorithms in the binary fork-join model with non-trivial efficiency, and we present data-oblivious algorithms for several applications including list ranking, Euler tour, tree contraction, connected components, and minimum spanning forest. All of our data oblivious algorithms have bounds that either match or improve over the best known bounds for insecure algorithms. Complementing these asymptotically efficient results, we present a practical variant of our sorting algorithm that is self-contained and potentially implementable. It has optimal caching cost, and it is only a łog łog n factor off from optimal work and about a łog n factor off in terms of span. We also present an EREW variant with optimal work and caching cost, and with the same asymptotic span. 
    more » « less