skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2009003

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traditional design galleries enable users to search for examples based on surface attributes (e.g., color or style), and largely obscure underlying principles (e.g., hierarchy or readability). We conducted three studies to explore how galleries could be constructed to help novices learn key design principles. Study 1 revealed that novices gain perspective by observing how designs evolve throughout a process. Study 2 found that novices are better at identifying design issues when viewing iterations that show improvements for just one principle at a time, rather than multiple. Building on these insights, we created ProcessGallery, a tool that enables users to browse contrasting pairs of early-and-late iterations of designs that highlight key improvements organized by design principles. In Study 3, a within-subjects experiment, sixteen participants iterated on a seed design after viewing examples in ProcessGallery versus a traditional gallery. Using ProcessGallery, participants found more appropriate examples, assessed designs better, and preferred ProcessGallery for learning compared to a traditional gallery. 
    more » « less
  2. Recent advances in Large Language Models (LLMs) show the potential to significantly augment or even replace complex human writing activities. However, for complex tasks where people need to make decisions as well as write a justification, the trade offs between making work efficient and hindering decisions remain unclear. In this paper, we explore this question in the context of designing intelligent scaffolding for writing meta-reviews for an academic peer review process. We prototyped a system called MetaWriter'' trained on five years of open peer review data to support meta-reviewing. The system highlights common topics in the original peer reviews, extracts key points by each reviewer, and on request, provides a preliminary draft of a meta-review that can be further edited. To understand how novice and experienced meta-reviewers use MetaWriter, we conducted a within-subject study with 32 participants. Each participant wrote meta-reviews for two papers: one with and one without MetaWriter. We found that MetaWriter significantly expedited the authoring process and improved the coverage of meta-reviews, as rated by experts, compared to the baseline. While participants recognized the efficiency benefits, they raised concerns around trust, over-reliance, and agency. We also interviewed six paper authors to understand their opinions of using machine intelligence to support the peer review process and reported critical reflections. We discuss implications for future interactive AI writing tools to support complex synthesis work. 
    more » « less
  3. Misinformation runs rampant on social media and has been tied to adverse health behaviors such as vaccine hesitancy. Crowdsourcing can be a means to detect and impede the spread of misinformation online. However, past studies have not deeply examined the individual characteristics - such as cognitive factors and biases - that predict crowdworker accuracy at identifying misinformation. In our study (n = 265), Amazon Mechanical Turk (MTurk) workers and university students assessed the truthfulness and sentiment of COVID-19 related tweets as well as answered several surveys on personal characteristics. Results support the viability of crowdsourcing for assessing misinformation and content stance (i.e., sentiment) related to ongoing and politically-charged topics like the COVID-19 pandemic, however, alignment with experts depends on who is in the crowd. Specifically, we find that respondents with high Cognitive Reflection Test (CRT) scores, conscientiousness, and trust in medical scientists are more aligned with experts while respondents with high Need for Cognitive Closure (NFCC) and those who lean politically conservative are less aligned with experts. We see differences between recruitment platforms as well, as our data shows university students are on average more aligned with experts than MTurk workers, most likely due to overall differences in participant characteristics on each platform. Results offer transparency into how crowd composition affects misinformation and stance assessment and have implications on future crowd recruitment and filtering practices. 
    more » « less