- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0002000003000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Pedram, Massoud (5)
-
Lin, Ting-Ru (2)
-
Zhang, Bo (2)
-
Annavaram, Murali (1)
-
Beerel, Peter A. (1)
-
Katam, Naveen Kumar (1)
-
Li, Mingye (1)
-
Li, Xi (1)
-
Shahsavani, Soheil Nazar (1)
-
Zha, Haipeng (1)
-
Zhou, Xuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
null (3)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Li, Xi; Shahsavani, Soheil Nazar; Zhou, Xuan; Pedram, Massoud; Beerel, Peter A. (, ACM Transactions on Design Automation of Electronic Systems)Single flux quantum (SFQ) logic is a promising technology to replace complementary metal-oxide-semiconductor logic for future exa-scale supercomputing but requires the development of reliable EDA tools that are tailored to the unique characteristics of SFQ circuits, including the need for active splitters to support fanout and clocked logic gates. This article is the first work to present a physical design methodology for inserting hold buffers in SFQ circuits. Our approach is variation-aware, uses common path pessimism removal and incremental placement to minimize the overhead of timing fixes, and can trade off layout area and timing yield. Compared to a previously proposed approach using fixed hold time margins, Monte Carlo simulations show that, averaging across 10 ISCAS’85 benchmark circuits, our proposed method can reduce the number of inserted hold buffers by 8.4% with a 6.2% improvement in timing yield and by 21.9% with a 1.7% improvement in timing yield.more » « less
-
Lin, Ting-Ru; Pedram, Massoud (, the 39th International Conference on Computer-Aided Design)null (Ed.)
-
Zhang, Bo; Li, Mingye; Pedram, Massoud (, IEEE Transactions on Applied Superconductivity)null (Ed.)
-
Lin, Ting-Ru; Zhang, Bo; Pedram, Massoud (, IEEE Transactions on Applied Superconductivity)null (Ed.)
An official website of the United States government
