- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Allende_Prieto, C (2)
-
Cunha, Katia (2)
-
Kochukhov, Oleg (2)
-
Majewski, Steven R (2)
-
Muirhead, Philip S (2)
-
Pinsonneault, Marc (2)
-
Smith, Verne V (2)
-
Souto, Diogo (2)
-
Wanderley, Fábio (2)
-
Cao, Lyra (1)
-
Covey, Kevin (1)
-
Mahadevan, Suvrath (1)
-
Martinez, Cintia (1)
-
Stassun, Keivan G (1)
-
Terrien, Ryan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Stellar magnetic fields have a major impact on space weather around exoplanets orbiting low-mass stars. From an analysis of Zeeman-broadened Feilines measured in near-infrared SDSS/APOGEE spectra, mean magnetic fields are determined for a sample of 29 M dwarf stars that host closely orbiting small exoplanets. The calculations employed the radiative transfer code Synmast and MARCS stellar model atmospheres. The sample M dwarfs are found to have measurable mean magnetic fields ranging between ∼0.2 and ∼1.5 kG, falling in the unsaturated regime on the 〈B〉 versusProtplane. The sample systems contain 43 exoplanets, which include 23 from Kepler, nine from K2, and nine from Transiting Exoplanet Survey Satellite. We evaluated their equilibrium temperatures, insolation, and stellar habitable zones and found that only Kepler-186f and TOI-700d are inside the habitable zones of their stars. Using the derived values of 〈B〉 for the stars Kepler-186 and TOI-700 we evaluated the minimum planetary magnetic field that would be necessary to shield the exoplanets Kepler-186f and TOI-700d from their host star’s winds, considering reference magnetospheres with sizes equal to those of the present-day and young Earth, respectively. Assuming a ratio of 5% between large- to small-scaleB-fields, and a young-Earth magnetosphere, Kepler-186f and TOI-700d would need minimum planetary magnetic fields of, respectively, 0.05 and 0.24 G. These values are considerably smaller than Earth’s magnetic field of 0.25 G ≲B≲ 0.65 G, which suggests that these two exoplanets might have magnetic fields sufficiently strong to protect their atmospheres and surfaces from stellar magnetic fields.more » « less
-
Wanderley, Fábio; Cunha, Katia; Kochukhov, Oleg; Smith, Verne V; Souto, Diogo; Cao, Lyra; Covey, Kevin; Majewski, Steven R; Martinez, Cintia; Muirhead, Philip S; et al (, The Astrophysical Journal)Abstract Average magnetic field measurements are presented for 62 M-dwarf members of the Pleiades open cluster, derived from Zeeman-enhanced Feilines in theHband. A Markov Chain Monte Carlo methodology was employed to model magnetic filling factors using Sloan Digital Sky Survey (SDSS) IV APOGEE high-resolution spectra, along with the radiative transfer code Synmast, MARCS stellar atmosphere models, and the APOGEE Data Release 17 spectral line list. There is a positive correlation between mean magnetic fields and stellar rotation, with slow-rotator stars (Rossby number, Ro > 0.13) exhibiting a steeper slope than rapid rotators (Ro < 0.13). However, the latter sample still shows a positive trend between Ro and magnetic fields, which is given by 〈B〉 = 1604 × Ro−0.20. The derived stellar radii when compared with physical isochrones show that, on average, our sample shows radius inflation, with median enhanced radii ranging from +3.0% to +7.0%, depending on the model. There is a positive correlation between magnetic field strength and radius inflation, as well as with stellar spot coverage, correlations which together indicate that stellar spot-filling factors generated by strong magnetic fields might be the mechanism that drives radius inflation in these stars. We also compare our derived magnetic fields with chromospheric emission lines (Hα, Hβ, and CaiiK), as well as with X-ray and Hαto bolometric luminosity ratios, and find that stars with higher chromospheric and coronal activity tend to be more magnetic.more » « less
An official website of the United States government
