skip to main content


Search for: All records

Award ID contains: 2009418

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We provide a first-principles analysis of the energy fluxes in the oceanic internal wave field. The resulting formula is remarkably similar to the renowned phenomenological formula for the turbulent dissipation rate in the ocean, which is known as the finescale parameterization. The prediction is based on the wave turbulence theory of internal gravity waves and on a new methodology devised for the computation of the associated energy fluxes. In the standard spectral representation of the wave energy density, in the two-dimensional vertical wavenumber–frequency (mω) domain, the energy fluxes associated with the steady state are found to be directed downscale in both coordinates, closely matching the finescale parameterization formula in functional form and in magnitude. These energy transfers are composed of a “local” and a “scale-separated” contributions; while the former is quantified numerically, the latter is dominated by the induced diffusion process and is amenable to analytical treatment. Contrary to previous results indicating an inverse energy cascade from high frequency to low, at odds with observations, our analysis of all nonzero coefficients of the diffusion tensor predicts a direct energy cascade. Moreover, by the same analysis fundamental spectra that had been deemed “no-flux” solutions are reinstated to the status of “constant-downscale-flux” solutions. This is consequential for an understanding of energy fluxes, sources, and sinks that fits in the observational paradigm of the finescale parameterization, solving at once two long-standing paradoxes that had earned the name of “oceanic ultraviolet catastrophe.”

    Significance Statement

    The global circulation models cannot resolve the scales of the oceanic internal waves. The finescale parameterization of turbulent dissipation, a formula grounded in observations, is the standard tool by which the energy transfers due to internal waves are incorporated in the global models. Here, we provide an interpretation of this parameterization formula building on the first-principles statistical theory describing energy transfers between waves at different scales. Our result is in agreement with the finescale parameterization and points out a large contribution to the energy fluxes due to a type of wave interactions (local) usually disregarded. Moreover, the theory on which the traditional understanding of the parameterization is mainly built, a “diffusion approximation,” is known to be partly in contradiction with observations. We put forward a solution to this problem, visualized by means of “streamlines” that improve the intuition of the direction of the energy cascade.

     
    more » « less
  2. We use the Dyson–Wyld diagrammatic technique to analyse the infinite series for the correlation functions of the velocity in hydrodynamic turbulence. We demonstrate the fundamental role played by the triple correlator of the velocity in determining the entire statistics of the hydrodynamic turbulence. All higher-order correlation functions are expressed through the triple correlator. This is shown through the suggested triangular re-summation of the infinite diagrammatic series for multi-point correlation functions. The triangular re-summation is the next logical step after the Dyson–Wyld line re-summation for the Green's function and the double correlator. In particular, it allows us to explain why the inverse cascade of the two-dimensional hydrodynamic turbulence is close to Gaussian. Since the triple correlator dictates the flux of energy$\varepsilon$through the scales, we support the Kolmogorov-1941 idea that$\varepsilon$is one of the main characteristics of hydrodynamic turbulence.

     
    more » « less
    Free, publicly-accessible full text available November 25, 2024
  3. Free, publicly-accessible full text available November 1, 2024
  4. We calculate the net energy per unit time exchanged between two sets of modes in a generic system governed by a three-wave kinetic equation. Our calculation is based on the property of detailed energy conservation of the triadic resonant interactions. In a first application to isotropic systems, we re-derive the previously used formula for the energy flux as a particular case for adjacent sets. We then exploit the new formalism to quantify the level of locality of the energy transfers in the example of surface capillary waves. A second application to anisotropic wave systems expands the currently available set of tools to investigate magnitude and direction of the energy fluxes in these systems. We illustrate the use of the formalism by characterizing the energy pathways in the oceanic internal wavefield. Our proposed approach, unlike traditional approaches, is not limited to stationarity, scale invariance and strict locality. In addition, we define a number$w$that quantifies the scale separation necessary for two sets of modes to having negligible mutual energy exchange, with potential consequences in the interpretation of wave turbulence experiments. The methodology presented here provides a general, simple and systematic approach to energy fluxes in wave turbulence.

     
    more » « less
  5. Clebsch variables provide a canonical representation of ideal flows that is, in practice, difficult to handle: while the velocity field is a function of the Clebsch variables and their gradients, constructing the Clebsch variables from the velocity field is not trivial. We introduce an extended set of Clebsch variables that circumvents this problem. We apply this method to a compressible, chemically inhomogeneous, and rotating ideal fluid in a gravity field. A second difficulty, the secular growth of canonical variables even for stationary states of stratified fluids, makes expansions of the Hamiltonian in Clebsch variables problematic. We give a canonical transformation that associates a stationary state of the canonical variables with the stationary state of the fluid; the new set of variables permits canonical approximations of the dynamics. We apply this to a compressible stratified ideal fluid with the aim to facilitate forthcoming studies of wave turbulence of internal waves. 
    more » « less
  6. We develop a theory of strong anisotropy of the energy spectra in the thermally driven turbulent counterflow of superfluid 4 He. The key ingredients of the theory are the three-dimensional differential closure for the vector of the energy flux and the anisotropy of the mutual friction force. We suggest an approximate analytic solution of the resulting energy-rate equation, which is fully supported by our numerical solution. The two-dimensional energy spectrum is strongly confined in the direction of the counterflow velocity. In agreement with the experiments, the energy spectra in the direction orthogonal to the counterflow exhibit two scaling ranges: a near-classical non-universal cascade dominated range and a universal critical regime at large wavenumbers. The theory predicts the dependence of various details of the spectra and the transition to the universal critical regime on the flow parameters. This article is part of the theme issue ‘Scaling the turbulence edifice (part 2)’. 
    more » « less