skip to main content


Search for: All records

Award ID contains: 2009441

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We use a recent census of the Milky Way (MW) satellite galaxy population to constrain the lifetime of particle dark matter (DM). We consider two-body decaying dark matter (DDM) in which a heavy DM particle decays with lifetimeτcomparable to the age of the universe to a lighter DM particle (with mass splittingϵ) and to a dark radiation species. These decays impart a characteristic “kick velocity,”Vkick=ϵc, on the DM daughter particles, significantly depleting the DM content of low-mass subhalos and making them more susceptible to tidal disruption. We fit the suppression of the present-day DDM subhalo mass function (SHMF) as a function ofτandVkickusing a suite of high-resolution zoom-in simulations of MW-mass halos, and we validate this model on new DDM simulations of systems specifically chosen to resemble the MW. We implement our DDM SHMF predictions in a forward model that incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk using an empirical model for the galaxy–halo connection. By comparing to the observed MW satellite population, we conservatively exclude DDM models withτ< 18 Gyr (29 Gyr) forVkick= 20 kms−1(40 kms−1) at 95% confidence. These constraints are among the most stringent and robust small-scale structure limits on the DM particle lifetime and strongly disfavor DDM models that have been proposed to alleviate the Hubble andS8tensions.

     
    more » « less
  2. Abstract Active galactic nuclei (AGNs) can often be identified in radio images as two lobes, sometimes connected to a core by a radio jet. This multicomponent morphology unfortunately creates difficulties for source finders, leading to components that are (a) separate parts of a wider whole, and (b) offset from the multiwavelength cross identification of the host galaxy. In this work we define an algorithm, DRAGN hunter , for identifying double radio sources associated with AGNs (DRAGNs) from component catalog data in the first epoch Quick Look images of the high-resolution (≈3″ beam size) Very Large Array Sky Survey (VLASS). We use DRAGN hunter to construct a catalog of >17,000 DRAGNs in VLASS for which contamination from spurious sources is estimated at ≈11%. A “high-fidelity” sample consisting of 90% of our catalog is identified for which contamination is <3%. Host galaxies are found for ≈13,000 DRAGNs as well as for an additional 234,000 single-component radio sources. Using these data, we explore the properties of our DRAGNs, finding them to be typically consistent with Fanaroff–Riley class II sources and to allow us to report the discovery of 31 new giant radio galaxies identified using VLASS. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Abstract Compact steep spectrum (CSS) radio sources are active galactic nuclei (AGN) that have radio jets propagating only on galactic scales, defined as having projected linear size (LS) of up to 20 kpc. CSS sources are generally hosted by massive early-type galaxies with little ongoing star formation; however, a small fraction are known to have enhanced star formation. Using archival data from the Faint Images of the Radio Sky at Twenty cm survey, the Very Large Array Sky Survey, and the Sloan Digital Sky Survey, we identify a volume-limited sample of 166 CSS sources at z < 0.2 with L 1.4 GHz > 10 24 W Hz −1 . Comparing the star formation rates and linear sizes of these CSS sources, we find that the ≈14% of CSS sources with specific star formation rates above 0.01 Gyr −1 all have LS < 10 kpc. We discuss the possible mechanisms driving this result, concluding that it is likely the excess star formation in these sources occurred in multiple bursts and ceased prior to the AGN jet being triggered. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. null (Ed.)