Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper studies the learning-based optimal control for a class of infinite-dimensional linear time-delay systems. The aim is to fill the gap of adaptive dynamic programming (ADP) where adaptive optimal control of infinite-dimensional systems is not addressed. A key strategy is to combine the classical model-based linear quadratic (LQ) optimal control of time-delay systems with the state-of-art reinforcement learning (RL) technique. Both the model-based and data-driven policy iteration (PI) approaches are proposed to solve the corresponding algebraic Riccati equation (ARE) with guaranteed convergence. The proposed PI algorithm can be considered as a generalization of ADP to infinite-dimensional time-delay systems. The efficiency of the proposed algorithm is demonstrated by the practical application arising from autonomous driving in mixed traffic environments, where human drivers’ reaction delay is considered.more » « less
An official website of the United States government
