Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract ArgusSpec is a prototype autonomous spectroscopic follow-up instrument designed to characterize flares detected by the Argus Pathfinder telescope array by taking short exposure (30 s) broadband spectra (370–750 nm) at low resolutions (R∼ 150 at 500 nm). The instrument is built from consumer off-the-shelf astronomical equipment, assembled inside a shipping container, and deployed alongside the Argus Pathfinder at a dark sky observing site in Western North Carolina. In this paper, we describe the hardware design, system electronics, custom control software suite, automated target acquisition procedure, and data reduction pipeline. We present initial on-sky test data used to evaluate system performance and show a series of spectra taken of a small flare from AD Leonis. The $35k prototype ArgusSpec was designed, built, and deployed in under a year, largely from existing parts, and has been operating on-sky since 2023 March. With current hardware and software, the system is capable of receiving an observation, slewing, performing autonomous slit acquisition, and beginning data acquisition within an average of 32 s. With Argus Pathfinder’s 1 s cadence survey reporting alerts of rising sources within 2 s of onset, ArgusSpec can reach new targets well within a minute of the start of the event. As built, ArgusSpec can observe targets down to a 20σlimiting magnitude ofmV≈ 13 at 30 s cadence with an optical resolution ofR∼ 150 (at 500 nm). With automated rapid acquisition demonstrated, later hardware upgrades will be based on a clean-sheet optical design, solving many issues in the current system, significantly improving the limiting magnitude, and potentially enabling deep spectroscopy by the coaddition of data from an array of ArgusSpec systems. The primary science driver behind ArgusSpec is the characterization of the blackbody evolution of flares from nearby M-dwarfs. Large flares emitted by these stars could have significant impacts on the potential habitability of any orbiting exoplanets, but our current understanding of these events is in large part built on observations from a handful of active stars. ArgusSpec will characterize large numbers of flares from across the night sky, building a spectroscopic library of the most extreme events from a wide variety of stellar masses and ages.more » « less
-
Abstract Astrophysical transients with rapid developments on subhour timescales are intrinsically rare. Due to their short durations, events like stellar superflares, optical flashes from gamma-ray bursts, and shock breakouts from young supernovae are difficult to identify on timescales that enable spectroscopic follow-up. This paper presents the Evryscope Fast Transient Engine (EFTE), a new data reduction pipeline that is designed to provide low-latency transient alerts from the Evryscopes—a north–south pair of ultra-wide-field telescopes with an instantaneous footprint covering 38% of the entire sky—and tools for building long-term light curves from Evryscope data.EFTEleverages the optical stability of the Evryscopes by using a simple direct image subtraction routine that is suited to continuously monitoring the transient sky at a cadence of a minute. Candidates are produced within the base Evryscope 2 minute cadence for 98.5% of images, and internally filtered usingvetnet, a convolutional neural network real–bogus classifier.EFTEprovides an extensible and robust architecture for transient surveys probing similar timescales, and serves as the software test bed for the real-time analysis pipelines and public data distribution systems for the Argus Array, a next-generation all-sky observatory with a data rate 62 times higher than that of Evryscope.more » « less
-
Abstract Stellar radial-velocity (RV) jitter due to surface activity may bias the RV semiamplitude and mass of rocky planets. The amplitude of the jitter may be estimated from the uncertainty in the rotation period, allowing the mass to be more accurately obtained. We find candidate rotation periods for 17 out of 35 TESS Objects of Interest (TOI) hosting <3R⊕planets as part of the Magellan-TESS survey, which is the first-ever statistically robust study of exoplanet masses and radii across the photoevaporation gap. Seven periods are ≥3σdetections, two are ≥1.5σ, and eight show plausible variability, but the periods remain unconfirmed. The other 18 TOIs are nondetections. Candidate rotators include the host stars of the confirmed planets L 168-9 b, the HD 21749 system, LTT 1445 A b, TOI 1062 b, and the L 98-59 system. Thirteen candidates have no counterpart in the 1000 TOI rotation catalog of Canto Martins et al. We find periods for G3–M3 dwarfs using combined light curves from TESS and the Evryscope all-sky array of small telescopes, sometimes with longer periods than would be possible with TESS alone. Secure periods range from 1.4 to 26 days with Evryscope-measured photometric amplitudes as small as 2.1 mmag in . We also apply Monte Carlo sampling and a Gaussian process stellar activity model fromexoplanetto the TESS light curves of six TOIs to confirm the Evryscope periods.more » « less
-
Evans, Christopher J; Bryant, Julia J; Motohara, Kentaro (Ed.)
-
Chiozzi, Gianluca; Ibsen, Jorge (Ed.)
An official website of the United States government
