skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2009669

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The objectives of this paper are to: 1. Explain our ethical stance when doing research on soundscapes and sonic practices in Mongolia with herder communities as a Mongolian-American research team. 2. Describe our research process in concept and practice, which is based on a co-production or co-generation approach to research, highlighting the role of the team’s Nutag Researchers. 3. Discuss some cases of our co-production practice and some of the opportunities and challenges our team faces working together. 
    more » « less
  2. The accelerating pace of global change is driving a biodiversity extinction crisis ( 1 ) and is outstripping our ability to track, monitor, and understand ecosystems, which is traditionally the job of ecologists. Ecological research is an intensive, field-based enterprise that relies on the skills of trained observers. This process is both time-consuming and expensive, thus limiting the resolution and extent of our knowledge of the natural world. Although technology will never replace the intuition and breadth of skills of the experienced naturalist ( 2 ), ecologists cannot ignore the potential to greatly expand the scale of our studies through automation. The capacity to automate biodiversity sampling is being driven by three ongoing technological developments: the commoditization of small, low-power computing devices; advances in wireless communications; and an explosion in automated data-recognition algorithms in the field of machine learning. Automated data collection and machine learning are set to revolutionize in situ studies of natural systems. 
    more » « less