Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Current methods for identifying and predicting infectious disease dynamics in wildlife populations are limited. Pathogen transmission dynamics can be complex, influenced by behavioural interactions between and among hosts, pathogens and their environments. These behaviours may also be influenced directly by observers, with observational research methods being limited to habituated species. Banded mongooseMungos mungoare social, medium size carnivores infected with the novel tuberculosis pathogenMycobacterium mungi. This pathogen is principally transmitted during normal olfactory communication behaviours. Banded mongoose behavioural responses to humans change over the landscape, limiting the use of direct observational approaches in areas where mongoose are threatened and flee.The accelerometers in bio‐logging devices have been used previously to identify distinct behaviours in wildlife species, providing a tool to quantifying specific behaviours in ecological studies. We deployed Axy‐5X model accelerometers (TechnoSmArt) on captive mongoose to determine whether accelerometers could be used to identify key mongoose behavioural activities previously associated withM. mungitransmission.After two collaring periods, we determined that three distinct behavioural activities could be identified in the accelerometer data: bipedal vertical vigilance, running and scent marking activity; behaviours that have been shown to vary across land type in the banded mongoose.Results from this work advance current data analytics and provide modifications to data analysis works flows, updating and expanding upon current methodologies. We also provide preliminary evidence of successful mathematical classification of the target behaviours, supporting the future use of these devices. Methods applied here may allow model estimates ofM. mungitransmission in free‐ranging mongoose to be refined with possible application to other systems where direct observation approaches have limited application.more » « less
- 
            There is an increasingly urgent need to improve our ability to accurately forecast and control zoonotic diseases in wildlife reservoirs. We are confronted, however, with the continued challenge of accurately determining host infection status across space and time. This dilemma is epitomized with the Mycobacterium tuberculosis Complex (MTBC) pathogens and particularly in free-ranging wildlife, a critical global challenge for both human and animal health. In humans, transcriptional markers have been increasingly identified as a robust tool for diagnosing Mycobacterium tuberculosis (MTB) infection status but have rarely been utilized for diagnosing TB in free-ranging wildlife populations. Here, we report the first use of transcriptional markers to evaluate TB infection status in a free-ranging wildlife species, banded mongoose (Mungos mungo), infected with the MTBC pathogen, Mycobacterium mungi. In this study, we found that GBP5 and DUSP3 were significantly upregulated in free-ranging banded mongoose infected with M. mungi. These results provide the first step in developing an antemortem diagnostic tool for use in free-ranging wildlife species. Our results highlight the potential of transcriptional marker-based assays to advance our ability to detect and manage TB in free-ranging wildlife, especially in field studies and other scenarios when conventional diagnostics are not feasible.more » « lessFree, publicly-accessible full text available December 4, 2025
- 
            Zautner, Andreas E (Ed.)Introduction: Campylobacter spp. infections are responsible for significant diarrheal disease burden across the globe, with prevalence thought to be increasing. Although wild avian species have been studied as reservoirs of Campylobacter spp., our understanding of the role of wild mammalian species in disease transmission and persistence is limited. Host factors influencing infection dynamics in wild mammals have been neglected, particularly life traits, and the role of these factors in zoonotic spillover risk is largely unknown. Methods: Here, we conducted a systematic literature review, identifying mammalian species that had been tested for Campylobacter spp. infections (molecular and culture based). We used logistic regression to evaluate the relationship between the detection of Campylobacter spp. in feces and host life traits (urban association, trophic level, and sociality). Results: Our analysis suggest that C. jejuni transmission is associated with urban living and trophic level. The probability of carriage was highest in urban-associated species (p = 0.02793) and the most informative model included trophic level. In contrast, C. coli carriage appears to be strongly influenced by sociality (p = 0.0113) with trophic level still being important. Detection of Campylobacter organisms at the genus level, however, was only associated with trophic level (p = 0.0156), highlighting the importance of this trait in exposure dynamics across host and Campylobacter pathogen systems. Discussion: While many challenges remain in the detection and characterization of Camploybacter spp., these results suggest that host life traits may have important influence on pathogen exposure and transmission dynamics, providing a useful starting point for more directed surveillance approaches.more » « less
- 
            Hydrological modeling of large river basins and flood plains continues to be challenged by the low availability and quality of observed data for modeling input and model calibration. Global datasets are often used to bridge this gap, but are often difficult and time consuming to acquire, particularly in low resource regions of the world. Numerous calls have been made to standardize and share data to increase local basin modeling capacities and reduce redundancy in efforts, but barriers still exist. We discuss the challenges of hydrological modeling in data-scarce regions and describe a freely available online tool site developed to enable users to extract input data for any basin of any size. The site will allow users to visualize, map, interpolate, and reformat the data as needed for the intended application. We used our hydrological model of the Upper Zambezi basin and the Chobe-Zambezi floodplains to illustrate the use of this online toolset. Increasing access and dissemination of hydrological modeling data is a critical need, particularly among users where data requirements and access continue to impede locally driven management of hydrological systems.more » « less
- 
            Apollonio, Marco (Ed.)Resource partitioning promotes coexistence among guild members, and carnivores reduce interference competition through behavioral mechanisms that promote spatio-temporal separation. We analyzed sympatric lion and spotted hyena movements and activity patterns to ascertain the mechanisms facilitating their coexistence within semi-arid and wetland ecosystems. We identified recurrent high-use (revisitation) and extended stay (duration) areas within home ranges, as well as correlated movement-derived measures of inter- and intraspecific interactions with environmental variables. Spatial overlaps among lions and hyenas expanded during the wet season, and occurred at edges of home ranges, around water-points, along pathways between patches of high-use areas. Lions shared more of their home ranges with spotted hyenas in arid ecosystems, but shared more of their ranges with conspecifics in mesic environments. Despite shared space use, we found evidence for subtle temporal differences in the nocturnal movement and activity patterns between the two predators, suggesting a fine localized-scale avoidance strategy. Revisitation frequency and duration within home ranges were influenced by interspecific interactions, after land cover categories and diel cycles. Intraspecific interactions were also important for lions and, important for hyenas were moon illumination and ungulates attracted to former anthrax carcass sites in Etosha, with distance to water in Chobe/Linyanti. Recursion and duration according to locales of competitor probabilities were similar among female lions and both sexes of hyenas, but different for male lions. Our results suggest that lions and spotted hyenas mediate the potential for interference competition through subtle differences in temporal activity, fine-scale habitat use differentiation, and localized reactive-avoidance behaviors. These findings enhance our understanding of the potential effects of interspecific interactions among large carnivore space-use patterns within an apex predator system and show adaptability across heterogeneous and homogeneous environments. Future conservation plans should emphasize the importance of inter- and intraspecific competition within large carnivore communities, particularly moderating such effects within increasingly fragmented landscapes.more » « less
- 
            Introduction Campylobacter spp. infections are responsible for significant diarrheal disease burden across the globe, with prevalence thought to be increasing. Although wild avian species have been studied as reservoirs of Campylobacter spp., our understanding of the role of wild mammalian species in disease transmission and persistence is limited. Host factors influencing infection dynamics in wild mammals have been neglected, particularly life traits, and the role of these factors in zoonotic spillover risk is largely unknown. Methods Here, we conducted a systematic literature review, identifying mammalian species that had been tested for Campylobacter spp. infections (molecular and culture based). We used logistic regression to evaluate the relationship between the detection of Campylobacter spp. in feces and host life traits (urban association, trophic level, and sociality). Results Our analysis suggest that C. jejuni transmission is associated with urban living and trophic level. The probability of carriage was highest in urban-associated species ( p = 0.02793) and the most informative model included trophic level. In contrast, C. coli carriage appears to be strongly influenced by sociality ( p = 0.0113) with trophic level still being important. Detection of Campylobacter organisms at the genus level, however, was only associated with trophic level ( p = 0.0156), highlighting the importance of this trait in exposure dynamics across host and Campylobacter pathogen systems. Discussion While many challenges remain in the detection and characterization of Camploybacter spp., these results suggest that host life traits may have important influence on pathogen exposure and transmission dynamics, providing a useful starting point for more directed surveillance approaches.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
