skip to main content


Search for: All records

Award ID contains: 2009842

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present an overview and data release of the spectral line component of the SMA Large Program, CMZoom. CMZoom observed 12CO (2–1), 13CO (2–1), and C18O (2–1), three transitions of H2CO, several transitions of CH3OH, two transitions of OCS, and single transitions of SiO and SO within gas above a column density of N(H2) ≥ 1023 cm−2 in the Central Molecular Zone (CMZ; inner few hundred pc of the Galaxy). We extract spectra from all compact 1.3 mm CMZoom continuum sources and fit line profiles to the spectra. We use the fit results from the H2CO 3(0, 3)–2(0, 2) transition to determine the source kinematic properties. We find ∼90 per cent of the total mass of CMZoom sources have reliable kinematics. Only four compact continuum sources are formally self-gravitating. The remainder are consistent with being in hydrostatic equilibrium assuming that they are confined by the high external pressure in the CMZ. We find only two convincing proto-stellar outflows, ruling out a previously undetected population of very massive, actively accreting YSOs with strong outflows. Finally, despite having sufficient sensitivity and resolution to detect high-velocity compact clouds (HVCCs), which have been claimed as evidence for intermediate mass black holes interacting with molecular gas clouds, we find no such objects across the large survey area.

     
    more » « less
  2. Abstract

    Wide-field near-infrared (NIR) polarimetry was used to examine disk systems around two brown dwarfs (BDs) and two young stellar objects (YSOs) embedded in the Heiles Cloud 2 (HCl2) dark molecular cloud in Taurus as well as numerous stars located behind HCl2. Inclined disks exhibit intrinsic NIR polarization due to scattering of photospheric light, which is detectable even for unresolved systems. After removing polarization contributions from magnetically aligned dust in HCl2 determined from the background star information, significant intrinsic polarization was detected from the disk systems of one BD (ITG 17) and both YSOs (ITG 15, ITG 25), but not from the other BD (2M0444). The ITG 17 BD shows good agreement of the disk orientation inferred from the NIR and from published Atacama Large Millimeter/submillieter Array dust continuum imaging. ITG 17 was also found to reside in a 5200 au wide binary (or hierarchical quad star system) with the ITG 15 YSO disk system. The inferred disk orientations from the NIR for ITG 15 and ITG 17 are parallel to each other and perpendicular to the local magnetic field direction. The multiplicity of the system and the large BD disk nature could have resulted from formation in an environment characterized by misalignment of the magnetic field and the protostellar disks.

     
    more » « less
  3. Abstract We report high-resolution ALMA observations toward a massive protostellar core C1-Sa (∼30 M ⊙ ) in the Dragon infrared dark cloud. At the resolution of 140 au, the core fragments into two kernels (C1-Sa1 and C1-Sa2) with a projected separation of ∼1400 au along the elongation of C1-Sa, consistent with a Jeans length scale of ∼1100 au. Radiative transfer modeling using RADEX indicates that the protostellar kernel C1-Sa1 has a temperature of ∼75 K and a mass of 0.55 M ⊙ . C1-Sa1 also likely drives two bipolar outflows, one being parallel to the plane of the sky. C1-Sa2 is not detected in line emission and does not show any outflow activity but exhibits ortho-H 2 D + and N 2 D + emission in its vicinity; thus it is likely still starless. Assuming a 20 K temperature, C1-Sa2 has a mass of 1.6 M ⊙ . At a higher resolution of 96 au, C1-Sa1 begins to show an irregular shape at the periphery, but no clear sign of multiple objects or disks. We suspect that C1-Sa1 hosts a tight binary with inclined disks and outflows. Currently, one member of the binary is actively accreting while the accretion in the other is significantly reduced. C1-Sa2 shows hints of fragmentation into two subkernels with similar masses, which requires further confirmation with higher sensitivity. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  4. Abstract Star formation primarily occurs in filaments where magnetic fields are expected to be dynamically important. The largest and densest filaments trace the spiral structure within galaxies. Over a dozen of these dense (∼10 4 cm −3 ) and long (>10 pc) filaments have been found within the Milky Way, and they are often referred to as “bones.” Until now, none of these bones has had its magnetic field resolved and mapped in its entirety. We introduce the SOFIA legacy project FIELDMAPS which has begun mapping ∼10 of these Milky Way bones using the HAWC+ instrument at 214 μ m and 18.″2 resolution. Here we present a first result from this survey on the ∼60 pc long bone G47. Contrary to some studies of dense filaments in the Galactic plane, we find that the magnetic field is often not perpendicular to the spine (i.e., the center line of the bone). Fields tend to be perpendicular in the densest areas of active star formation and more parallel or random in other areas. The average field is neither parallel nor perpendicular to the Galactic plane or the bone. The magnetic field strengths along the spine typically vary from ∼20 to ∼100 μ G. Magnetic fields tend to be strong enough to suppress collapse along much of the bone, but for areas that are most active in star formation, the fields are notably less able to resist gravitational collapse. 
    more » « less
  5. ABSTRACT ATLASGAL is an 870-µm dust survey of 420 deg2 the inner Galactic plane and has been used to identify ∼10 000 dense molecular clumps. Dedicated follow-up observations and complementary surveys are used to characterize the physical properties of these clumps, map their Galactic distribution, and investigate the evolutionary sequence for high-mass star formation. The analysis of the ATLASGAL data is ongoing: We present an up-to-date version of the catalogue. We have classified 5007 clumps into four evolutionary stages (quiescent, protostellar, young stellar objects and H ii regions) and find similar numbers of clumps in each stage, suggesting a similar lifetime. The luminosity-to-mass (Lbol/Mfwhm) ratio curve shows a smooth distribution with no significant kinks or discontinuities when compared to the mean values for evolutionary stages indicating that the star formation process is continuous and that the observational stages do not represent fundamentally different stages or changes in the physical mechanisms involved. We compare the evolutionary sample with other star formation tracers (methanol and water masers, extended green objects and molecular outflows) and find that the association rates with these increases as a function of evolutionary stage, confirming that our classification is reliable. This also reveals a high association rate between quiescent sources and molecular outflows, revealing that outflows are the earliest indication that star formation has begun and that star formation is already ongoing in many of the clumps that are dark even at 70 µm. 
    more » « less
  6. Young massive stars warm up the large amount of gas and dust that condenses in their vicinity, exciting a forest of lines from different molecular species. Their line brightness is a diagnostic tool of the gas’s physical conditions locally, which we use to set constraints on the environment where massive stars form. We made use of the Atacama Large Millimeter/submillimeter Array at frequencies near 349 GHz, with an angular resolution of 0′′.1, to observe the methyl cyanide (CH 3 CN) emission which arises from the accretion disk of a young massive star. We sample the disk midplane with twelve distinct beams, where we get an independent measure of the gas’s (and dust’s) physical conditions. The accretion disk extends above the midplane, showing a double-armed spiral morphology projected onto the plane of the sky, which we sample with ten additional beams: Along these apparent spiral features, gas undergoes velocity gradients of about 1 km s −1 per 2000 au. The gas temperature ( T ) rises symmetrically along each side of the disk, from about 98 K at 3000 au to 289 K at 250 au, following a power law with radius R −0.43 . The CH 3 CN column density ( N ) increases from 9.2 × 10 15 cm −2 to 8.7 × 10 17 cm −2 at the same radii, following a power law with radius R −1.8 . In the framework of a circular gaseous disk observed approximately edge-on, we infer an H 2 volume density in excess of 4.8 ×10 9 cm −3 at a distance of 250 au from the star. We study the disk stability against fragmentation following the methodology by Kratter et al. (2010, ApJ, 708, 1585), which is appropriate under rapid accretion, and we show that the disk is marginally prone to fragmentation along its whole extent. 
    more » « less
  7. Abstract Using the Karl G. Jansky Very Large Array (VLA), we have conducted a survey for 22 GHz, 6 1,6 –5 2,3 H 2 O masers toward the Serpens South region. The masers were also observed with the Very Long Baseline Array following the VLA detections. We detect for the first time H 2 O masers in the Serpens South region that are found to be associated to three Class 0–Class I objects, including the two brightest protostars in the Serpens South cluster, known as CARMA-6 and CARMA-7. We also detect H 2 O masers associated to a source with no outflow or jet features. We suggest that this source is most probably a background asymptotic giant branch star projected in the direction of Serpens South. The spatial distribution of the emission spots suggest that the masers in the three Class 0–Class I objects emerge very close to the protostars and are likely excited in shocks driven by the interaction between a protostellar jet and the circumstellar material. Based on the comparison of the distributions of bolometric luminosity of sources hosting 22 GHz H 2 O masers and 162 young stellar objects covered by our observations, we identify a limit of L Bol ≈ 10 L ⊙ for a source to host water masers. However, the maser emission shows strong variability in both intensity and velocity spread, and therefore masers associated to lower-luminosity sources may have been missed by our observations. We also report 11 new sources with radio continuum emission at 22 GHz. 
    more » « less
  8. Abstract In this paper, we present the first results from a CARMA high-resolution 12 CO(1-0), 13 CO(1-0), and C 18 O(1-0) molecular line survey of the North America and Pelican (NAP) Nebulae. CARMA observations have been combined with single-dish data from the Purple Mountain 13.7 m telescope, to add short spacings and to produce high-dynamic-range images. We find that the molecular gas is predominantly shaped by the W80 H ii bubble, driven by an O star. Several bright rims noted in the observation are probably remnant molecular clouds, heated and stripped by the massive star. Matching these rims in molecular lines and optical images, we construct a model of the three-dimensional structure of the NAP complex. Two groups of molecular clumps/filaments are on the near side of the bubble: one is being pushed toward us, whereas the other is moving toward the bubble. Another group is on the far side of the bubble, and moving away. The young stellar objects in the Gulf region reside in three different clusters, each hosted by a cloud from one of the three molecular clump groups. Although all gas content in the NAP is impacted by feedback from the central O star, some regions show no signs of star formation, while other areas clearly exhibit star formation activity. Additional molecular gas being carved by feedback includes cometary structures in the Pelican Head region, and the boomerang features at the boundary of the Gulf region. The results show that the NAP complex is an ideal place for the study of feedback effects on star formation. 
    more » « less
  9. null (Ed.)
    ABSTRACT G0.253+0.016, aka ‘the Brick’, is one of the most massive (>105 M⊙) and dense (>104 cm−3) molecular clouds in the Milky Way’s Central Molecular Zone. Previous observations have detected tentative signs of active star formation, most notably a water maser that is associated with a dust continuum source. We present ALMA Band 6 observations with an angular resolution of 0.13 arcsec (1000 AU) towards this ‘maser core’ and report unambiguous evidence of active star formation within G0.253+0.016. We detect a population of eighteen continuum sources (median mass ∼2 M⊙), nine of which are driving bi-polar molecular outflows as seen via SiO (5–4) emission. At the location of the water maser, we find evidence for a protostellar binary/multiple with multidirectional outflow emission. Despite the high density of G0.253+0.016, we find no evidence for high-mass protostars in our ALMA field. The observed sources are instead consistent with a cluster of low-to-intermediate-mass protostars. However, the measured outflow properties are consistent with those expected for intermediate-to-high-mass star formation. We conclude that the sources are young and rapidly accreting, and may potentially form intermediate- and high-mass stars in the future. The masses and projected spatial distribution of the cores are generally consistent with thermal fragmentation, suggesting that the large-scale turbulence and strong magnetic field in the cloud do not dominate on these scales, and that star formation on the scale of individual protostars is similar to that in Galactic disc environments. 
    more » « less