skip to main content


Search for: All records

Award ID contains: 2009870

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present theDustFilamentscode, a full-sky model for the millimeter Galactic emission of thermal dust. Our model, composed of millions of filaments that are imperfectly aligned with the magnetic field, is able to reproduce the main features of the dust angular power spectra at 353 GHz as measured by the Planck mission. Our model is made up of a population of filaments with sizes following a Pareto distributionLa2.445, with an axis ratio between short and long semiaxesϵ∼ 0.16 and an angle of magnetic field misalignment with a dispersion rms(θLH) = 10°. On large scales, our model follows a Planck-based template. On small scales, our model produces spectra that behave like power laws up to∼ 4000 or smaller scales by considering even smaller filaments, limited only by computing power. We can produce any number of Monte Carlo realizations of small-scale Galactic dust. Our model will allow tests of how the small-scale non-Gaussianity affects CMB weak lensing and the consequences for the measurement of primordial gravitational waves or relativistic light relic species. Our model also can generate frequency decorrelation on the modified blackbody spectrum of dust and is freely adjustable to different levels of decorrelation. This can be used to test the performance of component separation methods and the impact of frequency spectrum residuals on primordialB-mode surveys. The filament density we paint in the sky is also able to reproduce the general level of non-Gaussianities measured by Minkowski functionals in the Planck 353 GHz channel map.

     
    more » « less
  2. Abstract

    Contamination by polarized foregrounds is one of the biggest challenges for future polarized cosmic microwave background (CMB) surveys and the potential detection of primordialB-modes. Future experiments, such as Simons Observatory (SO) and CMB-S4, will aim at very deep observations in relatively small (fsky∼ 0.1) areas of the sky. In this work, we investigate the forecasted performance, as a function of the survey field location on the sky, for regions over the full sky, balancing between polarized foreground avoidance and foreground component separation modeling needs. To do this, we simulate observations by an SO-like experiment and measure the error bar on the detection of the tensor-to-scalar ratio,σ(r), with a pipeline that includes a parametric component separation method, the Correlated Component Analysis, and the use of the Fisher information matrix. We forecast the performance over 192 survey areas covering the full sky and also for optimized low-foreground regions. We find that modeling the spectral energy distribution of foregrounds is the most important factor, and any mismatch will result in residuals and bias in the primordialB-modes. At these noise levels,σ(r) is not especially sensitive to the level of foreground contamination, provided the survey targets the least-contaminated regions of the sky close to the Galactic poles.

     
    more » « less