Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Kernel methods for solving partial differential equations work coordinate-free on the surface and yield high approximation rates for smooth solutions. Localized Lagrange bases have proven to alleviate the computational complexity of usual kernel methods for data fitting problems, but the efficient numerical solution of the ill-conditioned linear systems of equations arising from kernel- based Galerkin solutions to PDEs is a challenging problem which has not been addressed in the literature so far. In this article we apply the framework of the geometric multigrid method with a τ ≥ 2-cycle to scattered, quasi-uniform point clouds on the surface. We show that the resulting solver can be accelerated by using the Lagrange function decay and obtain satisfying convergence rates by a rigorous analysis. In particular, we show that the computational cost of the linear solver scales log-linear in the degrees of freedom.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Radial basis functions (RBFs) are prominent examples for reproducing kernels with associated reproducing kernel Hilbert spaces (RKHSs). The convergence theory for the kernel-based interpolation in that space is well understood and optimal rates for the whole RKHS are often known. Schaback added the doubling trick [Math. Comp. 68 (1999), pp. 201–216], which shows that functions having double the smoothness required by the RKHS (along with specific, albeit complicated boundary behavior) can be approximated with higher convergence rates than the optimal rates for the whole space. Other advances allowed interpolation of target functions which are less smooth, and different norms which measure interpolation error. The current state of the art of error analysis for RBF interpolation treats target functions having smoothness up to twice that of the native space, but error measured in norms which are weaker than that required for membership in the RKHS. Motivated by the fact that the kernels and the approximants they generate are smoother than required by the native space, this article extends the doubling trick to error which measures higher smoothness. This extension holds for a family of kernels satisfying easily checked hypotheses which we describe in this article, and includes many prominent RBFs. In the course of the proof, new convergence rates are obtained for the abstract operator considered by Devore and Ron in [Trans. Amer. Math. Soc. 362 (2010), pp. 6205–6229], and new Bernstein estimates are obtained relating high order smoothness norms to the native space norm.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
