skip to main content


Search for: All records

Award ID contains: 2011420

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We report the detection of very high energy gamma-ray emission from the blazar S3 1227+25 (VER J1230+253) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). VERITAS observations of the source were triggered by the detection of a hard-spectrum GeV flare on 2015 May 15 with the Fermi-Large Area Telescope (LAT). A combined 5 hr VERITAS exposure on May 16 and 18 resulted in a strong 13σdetection with a differential photon spectral index, Γ = 3.8 ± 0.4, and a flux level at 9% of the Crab Nebula above 120 GeV. This also triggered target-of-opportunity observations with Swift, optical photometry, polarimetry, and radio measurements, also presented in this work, in addition to the VERITAS and Fermi-LAT data. A temporal analysis of the gamma-ray flux during this period finds evidence of a shortest variability timescale ofτobs= 6.2 ± 0.9 hr, indicating emission from compact regions within the jet, and the combined gamma-ray spectrum shows no strong evidence of a spectral cutoff. An investigation into correlations between the multiwavelength observations found evidence of optical and gamma-ray correlations, suggesting a single-zone model of emission. Finally, the multiwavelength spectral energy distribution is well described by a simple one-zone leptonic synchrotron self-Compton radiation model.

     
    more » « less
  2. ABSTRACT

    Active galactic nuclei (AGNs) make up about 35 per cent of the more than 250 sources detected in very high-energy (VHE) gamma rays to date with the imaging atmospheric Cherenkov telescopes. Apart from four nearby radio galaxies and two AGNs of unknown type, all known VHE AGNs are blazars. Knowledge of the cosmological redshift of gamma-ray blazars is key to enabling the study of their intrinsic emission properties, as the interaction between gamma rays and the extragalactic background light (EBL) results in a spectral softening. Therefore, the redshift determination exercise is crucial to indirectly placing tight constraints on the EBL density, and to studying blazar population evolution across cosmic time. Due to the powerful relativistic jets in blazars, most of their host galaxies’ spectral features are outshined, and dedicated high signal-to-noise (S/N) spectroscopic observations are required. Deep medium- to high-resolution spectroscopy of 33 gamma-ray blazar optical counterparts was performed with the European Southern Observatory, New Technology Telescope, Keck II telescope, Shane 3-metre telescope, and the Southern African Large Telescope. From the sample, spectra from 25 objects display spectral features or are featureless and have high S/N. The other eight objects have low-quality featureless spectra. We systematically searched for absorption and emission features and estimated, when possible, the fractional host galaxy flux in the measured total flux. Our measurements yielded 14 firm spectroscopic redshifts, ranging from 0.0838 to 0.8125, one tentative redshift, and two lower limits: one at $z > 0.382$ and the other at z > 0.629.

     
    more » « less
  3. Abstract

    Superluminous supernovae (SLSNe) are a rare class of stellar explosions with luminosities ∼ 10–100 times greater than ordinary core-collapse supernovae. One popular model to explain the enhanced optical output of hydrogen-poor (Type I) SLSNe invokes energy injection from a rapidly spinning magnetar. A prediction in this case is that high-energy gamma-rays, generated in the wind nebula of the magnetar, could escape through the expanding supernova ejecta at late times (months or more after optical peak). This paper presents a search for gamma-ray emission in the broad energy band from 100 MeV to 30 TeV from two Type I SLSNe, SN2015bn, and SN2017egm, using observations from Fermi-LAT and VERITAS. Although no gamma-ray emission was detected from either source, the derived upper limits approach the putative magnetar’s spin-down luminosity. Prospects are explored for detecting very-high-energy (VHE; 100 GeV–100 TeV) emission from SLSNe-I with existing and planned facilities such as VERITAS and CTA.

     
    more » « less
  4. Abstract

    Flat-spectrum radio quasars (FSRQs) are the most luminous blazars at GeV energies but only rarely emit detectable fluxes of TeV gamma rays, typically during bright GeV flares. We explore the gamma-ray variability and spectral characteristics of three FSRQs that have been observed at GeV and TeV energies by Fermi-LAT and VERITAS, making use of almost 100 hr of VERITAS observations spread over 10 yr: 3C 279, PKS 1222+216, and Ton 599. We explain the GeV flux distributions of the sources in terms of a model derived from a stochastic differential equation describing fluctuations in the magnetic field in the accretion disk and estimate the timescales of magnetic flux accumulation and stochastic instabilities in their accretion disks. We identify distinct flares using a procedure based on Bayesian blocks and analyze their daily and subdaily variability and gamma-ray energy spectra. Using observations from VERITAS, as well as Fermi, Swift, and the Steward Observatory, we model the broadband spectral energy distributions of PKS 1222+216 and Ton 599 during very high energy (VHE)–detected flares in 2014 and 2017, respectively, strongly constraining the jet Doppler factors and gamma-ray emission region locations during these events. Finally, we place theoretical constraints on the potential production of PeV-scale neutrinos during these VHE flares.

     
    more » « less
  5. Abstract We report on multiwavelength target-of-opportunity observations of the blazar PKS 0735+178, located 2.°2 away from the best-fit position of the IceCube neutrino event IceCube-211208A detected on 2021 December 8. The source was in a high-flux state in the optical, ultraviolet, X-ray, and GeV γ -ray bands around the time of the neutrino event, exhibiting daily variability in the soft X-ray flux. The X-ray data from Swift-XRT and NuSTAR characterize the transition between the low-energy and high-energy components of the broadband spectral energy distribution (SED), and the γ -ray data from Fermi-LAT, VERITAS, and H.E.S.S. require a spectral cutoff near 100 GeV. Both the X-ray and γ -ray measurements provide strong constraints on the leptonic and hadronic models. We analytically explore a synchrotron self-Compton model, an external Compton model, and a lepto-hadronic model. Models that are entirely based on internal photon fields face serious difficulties in matching the observed SED. The existence of an external photon field in the source would instead explain the observed γ -ray spectral cutoff in both the leptonic and lepto-hadronic models and allow a proton jet power that marginally agrees with the Eddington limit in the lepto-hadronic model. We show a numerical lepto-hadronic model with external target photons that reproduces the observed SED and is reasonably consistent with the neutrino event despite requiring a high jet power. 
    more » « less
    Free, publicly-accessible full text available August 23, 2024
  6. Abstract Dark matter is a key piece of the current cosmological scenario, with weakly interacting massive particles (WIMPs) a leading dark matter candidate. WIMPs have not been detected in their conventional parameter space (100 GeV ≲ M χ ≲ 100 TeV), a mass range accessible with current Imaging Atmospheric Cherenkov Telescopes. As ultraheavy dark matter (UHDM; M χ ≳ 100 TeV) has been suggested as an underexplored alternative to the WIMP paradigm, we search for an indirect dark matter annihilation signal in a higher mass range (up to 30 PeV) with the VERITAS γ -ray observatory. With 216 hr of observations of four dwarf spheroidal galaxies, we perform an unbinned likelihood analysis. We find no evidence of a γ -ray signal from UHDM annihilation above the background fluctuation for any individual dwarf galaxy nor for a joint-fit analysis, and consequently constrain the velocity-weighted annihilation cross section of UHDM for dark matter particle masses between 1 TeV and 30 PeV. We additionally set constraints on the allowed radius of a composite UHDM particle. 
    more » « less
  7. Abstract The ground-based gamma-ray observatory Very Energetic Radiation Imaging Telescope Array System (VERITAS, https://veritas.sao.arizona.edu/ ) is sensitive to photons of astrophysical origin with energies in the range between ≈85 GeV and ≈30 TeV. The instrument consists of four 12 m diameter imaging Cherenkov telescopes operating at the Fred Lawrence Whipple Observatory in southern Arizona. VERITAS started four-telescope operations in 2007 and collects about 1100 hr of good-weather data per year. The VERITAS collaboration has published over 100 journal articles since 2008 reporting on gamma-ray observations of a large variety of objects: Galactic sources like supernova remnants, pulsar wind nebulae, and binary systems; extragalactic sources like star-forming galaxies, dwarf-spheroidal galaxies, and highly variable active galactic nuclei. This note presents VTSCat: the catalog of high-level data products from all VERITAS publications. 
    more » « less
  8. ABSTRACT MAXI J1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to ∼500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 1011 and 1013 cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA. 
    more » « less
  9. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
    Optical SETI (Search for Extraterrestrial Intelligence) instruments that can explore the very fast time domain, especially with large sky coverage, offer an opportunity for new discoveries that can complement multimessenger and time domain astrophysics. The Panoramic SETI experiment (PANOSETI) aims to observe optical transients with nanosecond to second duration over a wide field-of-view (∼2,500 sq.deg.) by using two assemblies of tens of telescopes to reject spurious signals by coincidence detection. Three PANOSETI telescopes, connected to a White Rabbit timing network used to synchronize clocks at the nanosecond level, have been deployed at Lick Observatory on two sites separated by a distance of 677 meters to distinguish nearby light sources (such as Cherenkov light from particle showers in the Earth’s atmosphere) from astrophysical sources at large distances. In parallel to this deployment, we present results obtained during four nights of simultaneous observations with the four 12-meter VERITAS gamma-ray telescopes and two PANOSETI telescopes at the Fred Lawrence Whipple Observatory. We report PANOSETI’s first detection of astrophysical gamma rays, comprising three events with energies in the range between ∼15 TeV and ∼50 TeV. These were emitted by the Crab Nebula, and identified as gamma rays using joint VERITAS observations. 
    more » « less
  10. Abstract We report on a long-lasting, elevated gamma-ray flux state from VER J0521+211 observed by VERITAS, MAGIC, and Fermi-LAT in 2013 and 2014. The peak integral flux above 200 GeV measured with the nightly binned light curve is (8.8 ± 0.4) × 10 −7 photons m −2 s −1 , or ∼37% of the Crab Nebula flux. Multiwavelength observations from X-ray, UV, and optical instruments are also presented. A moderate correlation between the X-ray and TeV gamma-ray fluxes was observed, and the X-ray spectrum appeared harder when the flux was higher. Using the gamma-ray spectrum and four models of the extragalactic background light (EBL), a conservative 95% confidence upper limit on the redshift of the source was found to be z ≤ 0.31. Unlike the gamma-ray and X-ray bands, the optical flux did not increase significantly during the studied period compared to the archival low-state flux. The spectral variability from optical to X-ray bands suggests that the synchrotron peak of the spectral energy distribution (SED) may become broader during flaring states, which can be adequately described with a one-zone synchrotron self-Compton model varying the high-energy end of the underlying particle spectrum. The synchrotron peak frequency of the SED and the radio morphology of the jet from the MOJAVE program are consistent with the source being an intermediate-frequency-peaked BL Lac object. 
    more » « less