Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Multiwavelength observations are now the norm for studying blazars’ various states of activity, classifying them, and determining the possible underlying physical processes driving their emission. Broadband emission models became unavoidable tools for testing emission scenarios and setting the values of physical quantities such as the magnetic field strength, Doppler factor, or shape of the particle distribution of the emission zone(s). We announce here the first public release of a new tool,Bjet_MCMC, that can automatically fit the broadband spectral energy distributions (SEDs) of blazars. The complete code is available on GitHub and allows for testing leptonic synchrotron self-Compton models with or without external inverse-Compton processes from the thermal environment of supermassive black holes (accretion disk and broad-line region). The code is designed to be user-friendly and computationally efficient. It contains a core written in C++ and a fully parallelized SED fitting method. The original multi-SSC zone model ofBjetis also available on GitHub but is not included in the Markov Chain Monte Carlo fitting process at the moment. We present the features, performance, and results ofBjet_MCMC, as well as user advice.more » « less
- 
            Abstract We use the Very Energetic Radiation Imaging telescope Array System (VERITAS) imaging air Cherenkov telescope array to obtain the first measured angular diameter ofβUMa at visual wavelengths using stellar intensity interferometry (SII) and independently constrain the limb-darkened angular diameter. The age of the Ursa Major moving group has been assessed from the ages of its members, including nuclear member Merak (βUMa), an A1-type subgiant, by comparing effective temperature and luminosity constraints to model stellar evolution tracks. Previous interferometric limb-darkened angular-diameter measurements ofβUMa in the near-infrared (Center for High Angular Resolution Astronomy (CHARA) Array, 1.149 ± 0.014 mas) and mid-infrared (Keck Nuller, 1.08 ± 0.07 mas), together with the measured parallax and bolometric flux, have constrained the effective temperature. This paper presents current VERITAS-SII observation and analysis procedures to derive squared visibilities from correlation functions. We fit the resulting squared visibilities to find a limb-darkened angular diameter of 1.07 ± 0.04 (stat) ± 0.05 (sys) mas, using synthetic visibilities from a stellar atmosphere model that provides a good match to the spectrum ofβUMa in the optical wave band. The VERITAS-SII limb-darkened angular diameter yields an effective temperature of 9700 ± 200 ± 200 K, consistent with ultraviolet spectrophotometry, and an age of 390 ± 29 ± 32 Myr, using MESA Isochrones and Stellar Tracks. This age is consistent with 408 ± 6 Myr from the CHARA Array angular diameter.more » « less
- 
            Abstract G106.3+2.7, commonly considered to be a composite supernova remnant (SNR), is characterized by a boomerang-shaped pulsar wind nebula (PWN) and two distinct (“head” and “tail”) regions in the radio band. A discovery of very-high-energy gamma-ray emission (Eγ> 100 GeV) followed by the recent detection of ultrahigh-energy gamma-ray emission (Eγ> 100 TeV) from the tail region suggests that G106.3+2.7 is a PeVatron candidate. We present a comprehensive multiwavelength study of the Boomerang PWN (100″ around PSR J2229+6114) using archival radio and Chandra data obtained two decades ago, a new NuSTAR X-ray observation from 2020, and upper limits on gamma-ray fluxes obtained by Fermi-LAT and VERITAS observatories. The NuSTAR observation allowed us to detect a 51.67 ms spin period from the pulsar PSR J2229+6114 and the PWN emission characterized by a power-law model with Γ = 1.52 ± 0.06 up to 20 keV. Contrary to the previous radio study by Kothes et al., we prefer a much lower PWNB-field (B∼ 3μG) and larger distance (d∼ 8 kpc) based on (1) the nonvarying X-ray flux over the last two decades, (2) the energy-dependent X-ray size of the PWN resulting from synchrotron burn-off, and (3) the multiwavelength spectral energy distribution (SED) data. Our SED model suggests that the PWN is currently re-expanding after being compressed by the SNR reverse shock ∼1000 yr ago. In this case, the head region should be formed by GeV–TeV electrons injected earlier by the pulsar propagating into the low-density environment.more » « less
- 
            Abstract The Breakthrough Listen Initiative is conducting a program using multiple telescopes around the world to search for “technosignatures”: artificial transmitters of extraterrestrial origin from beyond our solar system. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) Collaboration joined this program in 2018 and provides the capability to search for one particular technosignature: optical pulses of a few nanoseconds in duration detectable over interstellar distances. We report here on the analysis and results of dedicated VERITAS observations of Breakthrough Listen targets conducted in 2019 and 2020 and of archival VERITAS data collected since 2012. Thirty hours of dedicated observations of 136 targets and 249 archival observations of 140 targets were analyzed and did not reveal any signals consistent with a technosignature. The results are used to place limits on the fraction of stars hosting transmitting civilizations. We also discuss the minimum pulse sensitivity of our observations and present VERITAS observations of CALIOP: a space-based pulsed laser on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. The detection of these pulses with VERITAS, using the analysis techniques developed for our technosignature search, allows a test of our analysis efficiency and serves as an important proof of principle.more » « less
- 
            ABSTRACT Active galactic nuclei (AGNs) make up about 35 per cent of the more than 250 sources detected in very high-energy (VHE) gamma rays to date with the imaging atmospheric Cherenkov telescopes. Apart from four nearby radio galaxies and two AGNs of unknown type, all known VHE AGNs are blazars. Knowledge of the cosmological redshift of gamma-ray blazars is key to enabling the study of their intrinsic emission properties, as the interaction between gamma rays and the extragalactic background light (EBL) results in a spectral softening. Therefore, the redshift determination exercise is crucial to indirectly placing tight constraints on the EBL density, and to studying blazar population evolution across cosmic time. Due to the powerful relativistic jets in blazars, most of their host galaxies’ spectral features are outshined, and dedicated high signal-to-noise (S/N) spectroscopic observations are required. Deep medium- to high-resolution spectroscopy of 33 gamma-ray blazar optical counterparts was performed with the European Southern Observatory, New Technology Telescope, Keck II telescope, Shane 3-metre telescope, and the Southern African Large Telescope. From the sample, spectra from 25 objects display spectral features or are featureless and have high S/N. The other eight objects have low-quality featureless spectra. We systematically searched for absorption and emission features and estimated, when possible, the fractional host galaxy flux in the measured total flux. Our measurements yielded 14 firm spectroscopic redshifts, ranging from 0.0838 to 0.8125, one tentative redshift, and two lower limits: one at $z > 0.382$ and the other at z > 0.629.more » « less
- 
            Abstract We report the detection of very high energy gamma-ray emission from the blazar S3 1227+25 (VER J1230+253) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). VERITAS observations of the source were triggered by the detection of a hard-spectrum GeV flare on 2015 May 15 with the Fermi-Large Area Telescope (LAT). A combined 5 hr VERITAS exposure on May 16 and 18 resulted in a strong 13σdetection with a differential photon spectral index, Γ = 3.8 ± 0.4, and a flux level at 9% of the Crab Nebula above 120 GeV. This also triggered target-of-opportunity observations with Swift, optical photometry, polarimetry, and radio measurements, also presented in this work, in addition to the VERITAS and Fermi-LAT data. A temporal analysis of the gamma-ray flux during this period finds evidence of a shortest variability timescale ofτobs= 6.2 ± 0.9 hr, indicating emission from compact regions within the jet, and the combined gamma-ray spectrum shows no strong evidence of a spectral cutoff. An investigation into correlations between the multiwavelength observations found evidence of optical and gamma-ray correlations, suggesting a single-zone model of emission. Finally, the multiwavelength spectral energy distribution is well described by a simple one-zone leptonic synchrotron self-Compton radiation model.more » « less
- 
            Abstract Superluminous supernovae (SLSNe) are a rare class of stellar explosions with luminosities ∼ 10–100 times greater than ordinary core-collapse supernovae. One popular model to explain the enhanced optical output of hydrogen-poor (Type I) SLSNe invokes energy injection from a rapidly spinning magnetar. A prediction in this case is that high-energy gamma-rays, generated in the wind nebula of the magnetar, could escape through the expanding supernova ejecta at late times (months or more after optical peak). This paper presents a search for gamma-ray emission in the broad energy band from 100 MeV to 30 TeV from two Type I SLSNe, SN2015bn, and SN2017egm, using observations from Fermi-LAT and VERITAS. Although no gamma-ray emission was detected from either source, the derived upper limits approach the putative magnetar’s spin-down luminosity. Prospects are explored for detecting very-high-energy (VHE; 100 GeV–100 TeV) emission from SLSNe-I with existing and planned facilities such as VERITAS and CTA.more » « less
- 
            Abstract Monochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating or decaying dark matter particles that could relatively easily be distinguished from astrophysical or instrumental backgrounds. We provide an updated assessment of the sensitivity of the Cherenkov Telescope Array (CTA) to such signals, based on observations of the Galactic centre region as well as of selected dwarf spheroidal galaxies. We find that current limits and detection prospects for dark matter masses above 300 GeV will be significantly improved, by up to an order of magnitude in the multi-TeV range. This demonstrates that CTA will set a new standard for gamma-ray astronomy also in this respect, as the world's largest and most sensitive high-energy gamma-ray observatory, in particular due to its exquisite energy resolution at TeV energies and the adopted observational strategy focussing on regions with large dark matter densities. Throughout our analysis, we use up-to-date instrument response functions, and we thoroughly model the effect of instrumental systematic uncertainties in our statistical treatment. We further present results for other potential signatures with sharp spectral features, e.g. box-shaped spectra, that would likewise very clearly point to a particle dark matter origin.more » « less
- 
            Abstract Flat-spectrum radio quasars (FSRQs) are the most luminous blazars at GeV energies but only rarely emit detectable fluxes of TeV gamma rays, typically during bright GeV flares. We explore the gamma-ray variability and spectral characteristics of three FSRQs that have been observed at GeV and TeV energies by Fermi-LAT and VERITAS, making use of almost 100 hr of VERITAS observations spread over 10 yr: 3C 279, PKS 1222+216, and Ton 599. We explain the GeV flux distributions of the sources in terms of a model derived from a stochastic differential equation describing fluctuations in the magnetic field in the accretion disk and estimate the timescales of magnetic flux accumulation and stochastic instabilities in their accretion disks. We identify distinct flares using a procedure based on Bayesian blocks and analyze their daily and subdaily variability and gamma-ray energy spectra. Using observations from VERITAS, as well as Fermi, Swift, and the Steward Observatory, we model the broadband spectral energy distributions of PKS 1222+216 and Ton 599 during very high energy (VHE)–detected flares in 2014 and 2017, respectively, strongly constraining the jet Doppler factors and gamma-ray emission region locations during these events. Finally, we place theoretical constraints on the potential production of PeV-scale neutrinos during these VHE flares.more » « less
- 
            Aims.We introduce the TELAMON program which is using the Effelsberg 100-m telescope to monitor the radio spectra of active galactic nuclei (AGN) under scrutiny in astroparticle physics, specifically TeV blazars and candidate neutrino-associated AGN. Here, we present and characterize our main sample of TeV-detected blazars. Methods.We analyzed the data sample from the first ∼2.5 yr of observations between August 2020 and February 2023 in the range from 14 GHz to 45 GHz. During this pilot phase, we observed all 59 TeV-detected blazars in the Northern Hemisphere (i.e., Dec > 0°) known at the time of observation. We discuss the basic data reduction and calibration procedures used for all TELAMON data and introduce a sub-band averaging method used to calculate average light curves for the sources in our sample. Results.The TeV-selected sources in our sample exhibit a median flux density of 0.12 Jy at 20 mm, 0.20 Jy at 14 mm, and 0.60 Jy at 7 mm. The spectrum for most of the sources is consistent with a flat radio spectrum and we found a median spectral index (S(ν)∝να) ofα = −0.11. Our results on flux density and spectral index are consistent with previous studies of TeV-selected blazars. Compared to the GeV-selected F-GAMMA sample, TELAMON sources are significantly fainter in the radio band. This is consistent with the double-humped spectrum of blazars being shifted towards higher frequencies for TeV-emitters (in particular for high-synchrotron peaked BL Lac type objects), which results in a lower radio flux density. The spectral index distribution of our TeV-selected blazar sample is not significantly different from the GeV-selected F-GAMMA sample. Moreover, we present a strategy to track the light curve evolution of sources in our sample for future variability and correlation analysis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
