Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Technologies for large‐scale manufacturing of viral vectors for gene therapies, such as tangential flow filtration and membrane chromatography, are under development. In these early stages of process development, techno‐economic analyses are useful for identifying membrane properties yielding the greatest impact on process performance. In this study, we adapted a techno‐economic framework used for monoclonal antibody capture for adeno‐associated viral vector purification. We added mechanistic models to simulate flux decline during harvesting and separating full and empty capsids during polishing. Graphical user interfaces were added to help users explore the design search space. We selected a base process and manipulated selected variables to see their impact on large‐scale manufacturing performance. These sensitivity analyses revealed that, under the selected process conditions, increasing module capacity reduces cost of goods more effectively than increasing operational flux in tangential flow membrane filtration modules for virus harvesting. Membrane chromatography columns with relatively low dynamic binding capacity (DBC) and short residence time (RT) offered similar or better economic performance than those with high DBC and long RT. Additionally, the difference in equilibrium solid‐phase concentration between full and empty capsids as a function of salt concentration significantly affects purity.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract Continuous manufacturing platforms and membrane chromatography are process technologies with the potential to reduce production costs and minimize process variability in monoclonal antibody production. This study presents a simulation and optimization framework to perform techno‐economic analyses of these strategies. Multi‐objective optimization was used to compare batch and continuous multicolumn operating modes and membrane and resin process alternatives, revealing performance differences in productivity and cost of goods attributed to variations in dynamic binding capacity, media geometry, and process residence time. From the set of optimal process configurations, we selected one membrane and one resin platform alternative yielding the highest net present values to undergo sensitivity analyses involving variations in batch cadence and product selling price. For the scenarios considered in this work, membrane continuous platforms showed benefits in the cost of goods and process mass intensity. Their shorter residence time compared to resins positions them as a viable alternative for single‐use capture chromatography. Moreover, this low residence time makes membrane platforms more flexible to changes in throughput, an essential feature for integrating capture into fully continuous processes.more » « lessFree, publicly-accessible full text available April 24, 2026
An official website of the United States government
