skip to main content


Search for: All records

Award ID contains: 2012093

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Quantifying the routing of snowmelt to surface water is critical for predicting the impacts of atmospheric deposition and changing land use on water quality in montane catchments. To investigate solute sources and streamflow in the montane Provo River watershed (Utah, USA), we used time‐series87Sr/86Sr ratios sampled at three sites (Soapstone, Woodland and Hailstone) across a gradient of bedrock types. Soils are influenced by aeolian dust contributions, with distinct87Sr/86Sr ratios relative to siliciclastic bedrock, providing an opportunity to investigate shallow versus deeper flow paths for controlling water chemistry. At the most upstream site (Soapstone), Sr concentrations averaged ~17 μg/L with minimal dilution during snowmelt suggesting subsurface flow paths dominated streamflow. However, a decrease in87Sr/86Sr ratios from ~0.717 during baseflow to as low as ~0.713 during snowmelt indicated the activation of shallow flow paths through dust‐derived soils. In contrast, downstream sites receiving water inputs from Sr‐rich carbonate bedrock (Woodland and Hailstone) exhibited strong dilution of Sr from ~120 to 20 μg/L and an increase in87Sr/86Sr ratios from ~0.7095 to ~0.712 during snowmelt. A three‐component mixing model using87Sr/86Sr ratios and Sr concentrations at Soapstone showed water inputs were dominated by direct snowmelt and flushed soil water during runoff and groundwater during baseflow. At Woodland and Hailstone, a two‐component mixing model showed that the river was a mixture of groundwater and up to 75% upstream channel water during snowmelt. Our findings highlight the importance of flushed soil water for controlling stream water discharge and chemistry during snowmelt, with the signal from the upstream site propagating downstream in a nested catchment. Further, aeolian dust contributes to the solute chemistry of montane streams with potential impacts on water quality along shallow flow paths. Potential contaminants in these surface soils (e.g., Pb deposition in dust) may have significant impacts on water quality during snowmelt runoff.

     
    more » « less
  2. Free, publicly-accessible full text available May 1, 2024
  3. null (Ed.)
  4. null (Ed.)