skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2012149

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Most fine ambient particulate matter (PM2.5)-based epidemiological models use globalized concentration-response (CR) functions assuming that the toxicity of PM2.5is solely mass-dependent without considering its chemical composition. Although oxidative potential (OP) has emerged as an alternate metric of PM2.5toxicity, the association between PM2.5mass and OP on a large spatial extent has not been investigated. In this study, we evaluate this relationship using 385 PM2.5samples collected from 14 different sites across 4 different continents and using 5 different OP (and cytotoxicity) endpoints. Our results show that the relationship between PM2.5mass vs. OP (and cytotoxicity) is largely non-linear due to significant differences in the intrinsic toxicity, resulting from a spatially heterogeneous chemical composition of PM2.5. These results emphasize the need to develop localized CR functions incorporating other measures of PM2.5properties (e.g., OP) to better predict the PM2.5-attributed health burdens. 
    more » « less