skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2012247

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract ContextThe interaction between topography and wind influences snow cover patterns, which can determine the distribution of species reliant on snow-free habitats. Past studies suggest snow accumulation creates suboptimal breeding habitats for Adélie penguins, leading to colony extinctions. However, evidence linking snow cover to landscape features is lacking. ObjectivesWe aimed to model landscape-driven snow cover patterns, identify long-term weather changes, and determine the impact of geomorphology and snow conditions on penguin colony persistence. MethodsWe combined remotely sensed imagery, digital surface models, and > 30 years of weather data with penguin population monitoring from 1975 to 2022 near Palmer Station, west Antarctic Peninsula. Using a multi-model approach, we identified landscape factors driving snow distribution on two islands. Historic and current penguin sub-colony perimeters were used to understand habitat selection, optimal habitat features, and factors associated with extinctions. ResultsDecadal and long-term trends in wind and snow conditions were detected. Snow accumulated on lower elevations and south-facing slopes driven by the north-northeasterly winds while Adélie penguins occupied higher elevations and more north-facing slopes. On Torgersen Island, sub-colonies on south aspects have gone extinct, and only five of the 23 historic sub-colonies remain active, containing 7% of the 1975 population. Adélie penguins will likely be extinct on this island in < 25 years. ConclusionsAdélie penguin populations are in decline throughout the west Antarctic Peninsula with multiple climate and human impacts likely driving Adélie penguins towards extinction in this region. We demonstrate precipitation has detrimental effects on penguins, an often overlooked yet crucial factor for bird studies. 
    more » « less